Integrated Cloud-Twin Synchronization for Supply Chain 5.0

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:EAI Endorsed Transactions on Industrial Networks and Intelligent Systems vol. 12, no. 2 (Mar 2025)
Váldodahkki: Divya Sasi Latha
Eará dahkkit: Mokkhamakkul, Tartat
Almmustuhtton:
European Alliance for Innovation (EAI)
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3275661539
003 UK-CbPIL
022 |a 2410-0218 
024 7 |a 10.4108/eetinis.v12i2.8600  |2 doi 
035 |a 3275661539 
045 2 |b d20250301  |b d20250331 
100 1 |a Divya Sasi Latha 
245 1 |a Integrated Cloud-Twin Synchronization for Supply Chain 5.0 
260 |b European Alliance for Innovation (EAI)  |c Mar 2025 
513 |a Journal Article 
520 3 |a The digital twin is thus emerging means of improving real-world performance from virtual spaces, especially relatedto Supply Chain 5.0 in Industry 5.0. This framework employs the integration of cloud computing and digital twin technologies to secure data storage, trusted tracking, and high reliability, is architectural for the integration of supply-chain sustainable enterprises. In this work, we introduce a high level architecture of cloud-based digital twin model for supply chain 5.0 , which was created to align the system of supply chain through real-time observation as well as real-timesupply chain 5.0 decision-making and control. This study introduces a cloud-based twin optimization model for Supply Chain 5.0, validated through genetic algorithm (GA) simulations. The model determines optimal weights to balance objectives, achieving an optimal objective function value that reflects trade-offs among operational efficiency, cost, and sustainability. A convergence plot illustrates the model’s iterative solution improvements, demonstrating its dynamic adaptability. Lastly, the proposed model defines and test a supply chain performance analysis through dynamic simulations. 
653 |a Synchronism 
653 |a Supply chains 
653 |a Data storage 
653 |a Genetic algorithms 
653 |a Real time 
653 |a Digital twins 
653 |a Iterative solution 
653 |a Cloud computing 
653 |a Optimization models 
700 1 |a Mokkhamakkul, Tartat 
773 0 |t EAI Endorsed Transactions on Industrial Networks and Intelligent Systems  |g vol. 12, no. 2 (Mar 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275661539/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275661539/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch