Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm for Mobile Edge Computing Networks (EHRL)

Spremljeno u:
Bibliografski detalji
Izdano u:PLoS One vol. 20, no. 11 (Nov 2025), p. e0336903
Glavni autor: Bayoumi, Hend
Daljnji autori: Abdel-Hamid, Nahla B, Amr M.T. Ali-Eldin, Labib, Labib M
Izdano:
Public Library of Science
Teme:
Online pristup:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3276035657
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0336903  |2 doi 
035 |a 3276035657 
045 2 |b d20251101  |b d20251130 
084 |a 174835  |2 nlm 
100 1 |a Bayoumi, Hend 
245 1 |a Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm for Mobile Edge Computing Networks (EHRL) 
260 |b Public Library of Science  |c Nov 2025 
513 |a Journal Article 
520 3 |a Mobile Edge Computing (MEC) is a computational paradigm that brings resources closer to the network edge to provide fast and efficient computing services for Mobile Devices (MDs). However, MDs are often constrained by limited energy and computational resources, which are insufficient to handle the high number of tasks. The problems of limited energy resources and the low computing capability of wireless nodes have led to the emergence of Wireless Power Transfer (WPT) and Energy Harvesting (EH) as a potential solution where electrical energy is transmitted wirelessly and then harvested by MDs and converted into power. This paper considers a wireless-powered MEC network employing a binary offloading policy, in which the computation tasks of MDs are either executed locally or fully offloaded to an edge server (ES). The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. Simultaneously, the DNN is trained using the Nadam optimizer (Nesterov-accelerated Adaptive Moment Estimation), which combines the benefits of Adam and Nesterov momentum, offering improved convergence speed and training stability. The proposed algorithm addresses the dual challenges of limited energy availability in MDs and the need for efficient task offloading to minimize latency and maximize computational performance. Numerical results validate the superiority of the proposed approach, demonstrating significant gains in computation performance and time efficiency compared to conventional techniques, making real-time and optimal offloading design truly viable even in a fast-fading environment. 
653 |a Energy resources 
653 |a Energy harvesting 
653 |a Deep learning 
653 |a Energy sources 
653 |a Algorithms 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Edge computing 
653 |a Neural networks 
653 |a Mobile computing 
653 |a Newton-Raphson method 
653 |a Computer applications 
653 |a Batteries 
653 |a Machine learning 
653 |a Energy consumption 
653 |a Internet of Things 
653 |a Reinforcement 
653 |a Wireless power transmission 
653 |a Decision making 
653 |a Network latency 
653 |a Computation offloading 
653 |a Remote computing 
653 |a Learning 
653 |a Latency 
653 |a Real time 
653 |a Constraints 
653 |a Data transmission 
653 |a Decisions 
653 |a Economic 
700 1 |a Abdel-Hamid, Nahla B 
700 1 |a Amr M.T. Ali-Eldin 
700 1 |a Labib, Labib M 
773 0 |t PLoS One  |g vol. 20, no. 11 (Nov 2025), p. e0336903 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276035657/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3276035657/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276035657/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch