Fast and Memory-Efficient Dynamic Programming Approach for Large-Scale EHH-Based Selection Scans

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Molecular Biology and Evolution vol. 42, no. 11 (Nov 2025)
Yazar: Rahman, Amatur
Diğer Yazarlar: Smith, T Quinn, Szpiech, Zachary A
Baskı/Yayın Bilgisi:
Oxford University Press
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3276084471
003 UK-CbPIL
022 |a 0737-4038 
022 |a 1537-1719 
024 7 |a 10.1093/molbev/msaf275  |2 doi 
035 |a 3276084471 
045 2 |b d20251101  |b d20251130 
084 |a 78901  |2 nlm 
100 1 |a Rahman, Amatur  |u Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA 
245 1 |a Fast and Memory-Efficient Dynamic Programming Approach for Large-Scale EHH-Based Selection Scans 
260 |b Oxford University Press  |c Nov 2025 
513 |a Journal Article 
520 3 |a Haplotype-based statistics are widely used for finding genomic regions under positive selection. At the heart of many such statistics is the computation of extended haplotype homozygosity (EHH), which captures the decay of homozygosity away from a focal site. This computation, repeated for potentially millions of sites, is computationally demanding, as it involves tracking counts of unique haplotypes iteratively over long genomic distances and across many individuals. Because of these computational challenges, existing tools do not scale well when applied to large-scale population datasets, such as the 1,000 Genomes Project, or the UK Biobank with 500,000 individuals. Optimizing computation becomes crucial when data sets grow large, especially when handling large sample sizes or generating training data for machine learning algorithms. Here, we propose a dynamic programming algorithm that substantially improves runtime and memory usage over existing tools on both real and simulated data. On real phased data, we achieve 5–50x speedup with minimal memory footprint. Our simulations show an even more pronounced performance gap with large populations (up to 15x speedup and 46x memory reduction). EHH-based statistics designed for unphased genotypes run an order of magnitude faster, and multi-parameter support results in 20x runtime improvement. Source code and binaries are available at https://github.com/szpiech/selscan as selscan v2.1. 
653 |a Statistics 
653 |a Dynamic programming 
653 |a Computation 
653 |a Source code 
653 |a Haplotypes 
653 |a Homozygosity 
653 |a Machine learning 
653 |a Algorithms 
653 |a Positive selection 
653 |a Genotypes 
653 |a Genomics 
653 |a Software 
653 |a Run time (computers) 
653 |a Environmental 
700 1 |a Smith, T Quinn  |u Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA 
700 1 |a Szpiech, Zachary A  |u Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA 
773 0 |t Molecular Biology and Evolution  |g vol. 42, no. 11 (Nov 2025) 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276084471/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276084471/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch