Machine Learning‐Enabled Triboelectric Nanogenerator for Continuous Sound Monitoring and Captioning

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Advanced Sensor Research vol. 4, no. 2 (Feb 1, 2025)
Հիմնական հեղինակ: Bagheri, Majid Haji
Այլ հեղինակներ: Gu, Emma, Khan, Asif Abdullah, Zhang, Yanguang, Xiao, Gaozhi, Nankali, Mohammad, Peng, Peng, Xi, Pengcheng, Ban, Dayan
Հրապարակվել է:
John Wiley & Sons, Inc.
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3276239067
003 UK-CbPIL
022 |a 2751-1219 
024 7 |a 10.1002/adsr.202400156  |2 doi 
035 |a 3276239067 
045 0 |b d20250201 
100 1 |a Bagheri, Majid Haji  |u Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada 
245 1 |a Machine Learning‐Enabled Triboelectric Nanogenerator for Continuous Sound Monitoring and Captioning 
260 |b John Wiley & Sons, Inc.  |c Feb 1, 2025 
513 |a Journal Article 
520 3 |a Advancements in live audio processing, specifically in sound classification and audio captioning technologies, have widespread applications ranging from surveillance to accessibility services. However, traditional methods encounter scalability and energy efficiency challenges. To overcome these, Triboelectric Nanogenerators (TENG) are explored for energy harvesting, particularly in live‐streaming sound monitoring systems. This study introduces a sustainable methodology integrating TENG‐based sensors into live sound monitoring pipelines, enhancing energy‐efficient sound classification and captioning by model selection and fine‐tuning strategies. Our cost‐effective TENG sensor harvests ambient sound vibrations and background noise, producing up to 1.2 µW cm−2 output power and successfully charging capacitors. This shows its capability for sustainable energy harvesting. The system achieves 94.3% classification accuracy using the Hierarchical Token Semantic Audio Transformer (HTS‐AT) model identified as optimal for live sound event monitoring. Additionally, continuous audio captioning using the EnCodec Combining Neural Audio Codec and Audio‐Text Joint Embedding for Automated Audio Captioning model (EnCLAP) showcases rapid and precise processing capabilities that are suitable for live‐streaming environments. The Bidirectional Encoder representation from the Audio Transformers (BEATs) model also demonstrated exceptional performance, achieving an accuracy of 97.25%. These models were fine‐tuned using the TENG‐recorded ESC‐50 dataset, ensuring the system's adaptability to diverse sound conditions. Overall, this research significantly contributes to the development of energy‐efficient sound monitoring systems with wide‐ranging implications across various sectors. 
653 |a Accuracy 
653 |a Background noise 
653 |a Energy harvesting 
653 |a Machine learning 
653 |a Embedded systems 
653 |a Datasets 
653 |a Codec 
653 |a Classification 
653 |a Real time 
653 |a Signal processing 
653 |a Sensors 
653 |a Sustainability 
653 |a Microphones 
653 |a Wearable computers 
653 |a Energy efficiency 
653 |a Nanogenerators 
653 |a Algorithms 
653 |a Surveillance 
653 |a Monitoring 
653 |a Acoustics 
653 |a Monitoring systems 
653 |a Sound 
700 1 |a Gu, Emma  |u Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada 
700 1 |a Khan, Asif Abdullah  |u Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada 
700 1 |a Zhang, Yanguang  |u Quantum and Nanotechnologies Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada 
700 1 |a Xiao, Gaozhi  |u Quantum and Nanotechnologies Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada 
700 1 |a Nankali, Mohammad  |u Faculty of Engineering, University of Waterloo, Waterloo, Ontario, Canada 
700 1 |a Peng, Peng  |u Faculty of Engineering, University of Waterloo, Waterloo, Ontario, Canada 
700 1 |a Xi, Pengcheng  |u Digital Technologies Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada 
700 1 |a Ban, Dayan  |u Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada 
773 0 |t Advanced Sensor Research  |g vol. 4, no. 2 (Feb 1, 2025) 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276239067/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3276239067/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276239067/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch