Novel Optimization Methods for Temporal and Predictive Clustering

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Liang, Jiazhou
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3276265442
003 UK-CbPIL
020 |a 9798265439567 
035 |a 3276265442 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Liang, Jiazhou 
245 1 |a Novel Optimization Methods for Temporal and Predictive Clustering 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Clustering, an unsupervised learning method, aims to group unlabeled samples based on similarity, but modern datasets introduce challenges. First, data often extends beyond static features to temporal sequences. Second, clustering may move beyond the geometric similarity between samples in feature space. Traditional clustering methods struggle with these complexities, as they largely assume static, geometrically separable samples. To address this limitation, this thesis introduces several new clustering approaches formulated as Mixed-Integer Linear Programs (MILP) to guarantee global optimization. Specifically, a Temporal Clustering framework addresses time-dependent data and considers temporal dynamism in cluster assignments and definition. A scalable Linear Predictive Clustering formulation groups samples by shared predictive structures in a non-separable feature space. A novel Granger-causal Clustering integrates temporal dynamics with predictive relationships and provides an interoperable definition via Bounded Box constraints. Collectively, these methods advance clustering by incorporating temporal, predictive, and causal structures in a principled optimization framework. 
653 |a Industrial engineering 
653 |a Computer science 
653 |a Mechanical engineering 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276265442/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276265442/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch