Integrating IoT, large language models, and knowledge graphs for future smart districts: A semantic approach for energy performance assessment

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Journal of Physics: Conference Series vol. 3140, no. 4 (Nov 2025), p. 042006
Yazar: Karjou, Payam Fatehi
Diğer Yazarlar: Berktold, Max, Saryazdi, Sina Khodadad, Rätz, Martin, Müller, Dirk
Baskı/Yayın Bilgisi:
IOP Publishing
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3276346607
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3140/4/042006  |2 doi 
035 |a 3276346607 
045 2 |b d20251101  |b d20251130 
100 1 |a Karjou, Payam Fatehi 
245 1 |a Integrating IoT, large language models, and knowledge graphs for future smart districts: A semantic approach for energy performance assessment 
260 |b IOP Publishing  |c Nov 2025 
513 |a Journal Article 
520 3 |a This research introduces a modular data management strategy for IoT-based building monitoring systems to enhance the evaluation of energy performance in future smart districts. By developing a flexible semantic data modeling framework, we integrate Industry Foundation Classes (IFC) data from the planning phase and sensor networks into Resource Description Framework (RDF) graphs using the Brick Schema ontology and a plant identification key scheme for data points, creating a modular knowledge graph. Additionally, we embed sensor metadata as a vector index, enabling a Large Language Model (LLM)-assisted graph query system with contextual awareness of the measurement infrastructure. Furthermore, we employed an Agentic Graph Retrieval-Augmented Generation (Agentic GRAG) technique powered by LLMs to facilitate natural language interaction and automate data processing. Testing on an energy data assessment platform testbed demonstrated improved operational efficiency through natural language queries. Our results highlight the effectiveness of the proposed data management approach, showing that the choice of LLM and adaptive prompting significantly affects system performance. In addition, incorporating relevant examples and prior chat history enhanced system responsiveness. This approach advances data analysis and decision-making by enabling efficient querying of knowledge graphs. In contrast, the knowledge graph’s modularity ensures scalable and adaptable data-modeling pipelines for building operators. 
653 |a Data management 
653 |a Modularity 
653 |a Data analysis 
653 |a Semantics 
653 |a Data processing 
653 |a Graphs 
653 |a Performance evaluation 
653 |a Large language models 
653 |a Performance assessment 
653 |a Resource Description Framework-RDF 
653 |a Natural language processing 
653 |a Knowledge representation 
653 |a Data points 
653 |a Natural language 
700 1 |a Berktold, Max 
700 1 |a Saryazdi, Sina Khodadad 
700 1 |a Rätz, Martin 
700 1 |a Müller, Dirk 
773 0 |t Journal of Physics: Conference Series  |g vol. 3140, no. 4 (Nov 2025), p. 042006 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276346607/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276346607/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch