Physics-Informed Neural Network for Building Energy Demand Prediction

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Physics: Conference Series vol. 3140, no. 5 (Nov 2025), p. 052002
Hovedforfatter: Altieri, Domenico
Andre forfattere: Saez, Raul, Perez, Manuel, Branca, Giovanni
Udgivet:
IOP Publishing
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3276346709
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3140/5/052002  |2 doi 
035 |a 3276346709 
045 2 |b d20251101  |b d20251130 
100 1 |a Altieri, Domenico 
245 1 |a Physics-Informed Neural Network for Building Energy Demand Prediction 
260 |b IOP Publishing  |c Nov 2025 
513 |a Journal Article 
520 3 |a The optimization of energy demand in the built environment has become a critical priority in the global drive for sustainability. Despite building energy simulation tools can provide valuable performance insights, their computational demands and complexity often impede practical implementation, especially for small-scale operational.This study presents the development of a novel surrogate modeling framework designed to predict residential building energy demand while maintaining computational efficiency.The methodology starts with data generation through EnergyPlus simulations across diverse building configurations, while, for modeling, a physics-informed neural network (PINN) is employed, which integrates domain knowledge from an additional simplified physical model with data-driven predictions. Differently from traditional machine learning approaches, the PINN framework helps to promote thermodynamic consistency by embedding fundamental heat transfer equations and energy conservation principles directly into the learning process, thereby fostering physically meaningful predictions even in scenarios not represented in the training data. The simplified physical model implemented within the loss function is a resistance-capacity model, which captures essential thermal dynamics through a compact representation of heat storage and transfer.The developed framework tries to effectively fill the gap between high-fidelity simulation tools and practical implementation requirements by enabling accurate and physical-informed evaluation, while accounting for complex system interactions. The PINN’s ability to align with physical constraints helps to ensure that the predictions remain reliable even under uncertain or previously unseen conditions, a crucial advantage for real-world applications. Finally, the additional simplified model acts as a physics-informed regularization that is proven to be more effective than common regularization methods in generalizing the model. 
653 |a Heat storage 
653 |a Regularization 
653 |a Built environment 
653 |a Residential energy 
653 |a Physics 
653 |a Neural networks 
653 |a Demand 
653 |a Modelling 
653 |a Residential buildings 
653 |a Regularization methods 
653 |a Complex systems 
653 |a Complexity 
653 |a Machine learning 
700 1 |a Saez, Raul 
700 1 |a Perez, Manuel 
700 1 |a Branca, Giovanni 
773 0 |t Journal of Physics: Conference Series  |g vol. 3140, no. 5 (Nov 2025), p. 052002 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276346709/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276346709/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch