Enhancing Urban Building Energy Management through MILP Optimization for building renovation

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Physics: Conference Series vol. 3140, no. 6 (Nov 2025), p. 062004
Autor principal: Garreau, Enora
Otros Autores: Rit, Martin, Arab, Ilias, Thorel, Mathieu
Publicado:
IOP Publishing
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3276346855
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3140/6/062004  |2 doi 
035 |a 3276346855 
045 2 |b d20251101  |b d20251130 
100 1 |a Garreau, Enora 
245 1 |a Enhancing Urban Building Energy Management through MILP Optimization for building renovation 
260 |b IOP Publishing  |c Nov 2025 
513 |a Journal Article 
520 3 |a With the continuous growth of urbanization and the ambitious decarbonation objectives to tackle climate change, new solutions are needed to optimize energy management in dense urban landscapes. This research advances MILP-based (Mixed Integer Linear Programming) optimization for large-scale urban applications by integrating a Warmstart technique that reduces computational time and increases the number of buildings considered. The problem is restructured to (1) solve the optimization problem with a more precise solution, (2) distribute the renovations across the various periods of the optimization problem, and (3) initialize the problem with the created solution. By significantly improving computational efficiency, the OptoBAT method presented in this paper can now account for a larger and more representative sample of urban building clusters, moving beyond simplified medoid representations to incorporate more granular spatial data. To evaluate the impact of these enhancements, this study compares the results of energy optimization for a French metropolitan case study before and after integrating the updated MILP methodology. The findings reveal improved model scalability, a reduction in computational demands by more than 75%, and potentially more accurate energy optimization outcomes. This research contributes to the field by advancing MILP-based optimization for large-scale urban applications. 
653 |a Energy management 
653 |a Linear programming 
653 |a Urban environments 
653 |a Spatial data 
653 |a Decarbonation 
653 |a Integer programming 
653 |a Optimization 
653 |a Computational efficiency 
653 |a Mixed integer 
653 |a Computing time 
653 |a Renovation 
700 1 |a Rit, Martin 
700 1 |a Arab, Ilias 
700 1 |a Thorel, Mathieu 
773 0 |t Journal of Physics: Conference Series  |g vol. 3140, no. 6 (Nov 2025), p. 062004 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276346855/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276346855/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch