Development and Characteristics of Ultra-Lightweight Concrete Mixed with Polyvinyl Alcohol Solution and Perlite

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:International Journal of Concrete Structures and Materials vol. 19, no. 1 (Dec 2025), p. 122
Hoofdauteur: Kang, Choonghyun
Andere auteurs: Hong, Sungnam, Park, Yongmyung, Kim, Taewan
Gepubliceerd in:
Springer Nature B.V.
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3276413429
003 UK-CbPIL
022 |a 1976-0485 
022 |a 2234-1315 
024 7 |a 10.1186/s40069-025-00864-3  |2 doi 
035 |a 3276413429 
045 2 |b d20251201  |b d20251231 
084 |a 243138  |2 nlm 
100 1 |a Kang, Choonghyun  |u Gyeongsang National University, Department of Ocean Civil Engineering, Tongyeong, Republic of Korea (GRID:grid.256681.e) (ISNI:0000 0001 0661 1492) 
245 1 |a Development and Characteristics of Ultra-Lightweight Concrete Mixed with Polyvinyl Alcohol Solution and Perlite 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, water-soluble polymer used in various fields. The use of PVA in concrete has been limited due to problems such as initial setting delay, early age strength reduction, and decreased mechanical and durability performance caused by the generation of microbubbles. This study aims to verify the performance and effectiveness of PVA as a foaming agent by reversely utilizing the microbubble generation phenomenon of PVA, which has been recognized as a problem. In addition, the production and characteristics of ultra-light foamed concrete were evaluated using perlite (PL). PVA solutions with concentrations of 2.5% and 5.0% were considered. PL ratios of 10% (P1), 20% (P2), 30% (P3), and 40% (P4) were applied to the mass of the PVA solution. The mass of PVA solution (s), OPC (c), and PL considered in the experiment were classified into s/c, s/PL, PL/c, and s/(c + PL), respectively, and the optimal mixing ratio was presented based on the experimental results. In addition, a new high-temperature-curing method was applied that combines high-temperature wet curing (60 °C, relative humidity 90% or higher) and high-temperature dry curing (105 ± 5 °C) to improve the strength reduction problem at the early age and to increase the pore expansion effect. In addition, thermal analysis (TG/DTA), X-ray diffeaction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were applied to analyze the hydration reaction products. The formed pores were imaged from the cross-section of each sample using an optical microscope, and the pore size was measured using image-processing software. The experimental results proved that PVA is a sufficiently effective material as a foaming agent for manufacturing foamed concrete in a high-temperature-curing environment. PVA showed a synergistic effect in expanding pores and increasing porosity, and PL improved insulation and lightweight. The manufactured ultralight foam concrete had a density of less than 1.0 g/cm3, a strength of 1–6 MPa, and a thermal conductivity of 0.13–0.19 W/m∙K. The appropriate mixing ratios within the range considered in this study were s/PL ratio of 5–3.33, PL/c ratio of 0.2–0.45, and s/(c + PL) ratio of 0.77–1.25. 
653 |a Thermal conductivity 
653 |a Lightweight concretes 
653 |a Ratios 
653 |a Foaming agents 
653 |a Differential thermal analysis 
653 |a Infrared analysis 
653 |a Polyvinyl alcohol 
653 |a Image processing 
653 |a Heat conductivity 
653 |a Hydration 
653 |a High temperature 
653 |a Fourier transforms 
653 |a Concrete mixing 
653 |a Pore size 
653 |a Optical microscopes 
653 |a Viscosity 
653 |a Experiments 
653 |a Temperature 
653 |a Reaction products 
653 |a Water soluble polymers 
653 |a Effectiveness 
653 |a Synergistic effect 
653 |a Curing agents 
653 |a Molecular weight 
653 |a Relative humidity 
653 |a Reinforced concrete 
653 |a Cement 
653 |a Curing 
653 |a Mixing ratio 
653 |a Perlite 
653 |a Porosity 
700 1 |a Hong, Sungnam  |u Gyeongsang National University, Department of Ocean Civil Engineering, Tongyeong, Republic of Korea (GRID:grid.256681.e) (ISNI:0000 0001 0661 1492) 
700 1 |a Park, Yongmyung  |u Pusan National University, Department of Civil Engineering, Busan, Republic of Korea (GRID:grid.262229.f) (ISNI:0000 0001 0719 8572) 
700 1 |a Kim, Taewan  |u Pusan National University, Department of Civil Engineering, Busan, Republic of Korea (GRID:grid.262229.f) (ISNI:0000 0001 0719 8572) 
773 0 |t International Journal of Concrete Structures and Materials  |g vol. 19, no. 1 (Dec 2025), p. 122 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276413429/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3276413429/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276413429/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch