Fault-tolerant control for high-speed trains based on neural network embedded compensation control

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Automatika vol. 66, no. 4 (Dec 2025), p. 841-853
Yazar: Hao, Zixu
Diğer Yazarlar: Liu, Yumei, Hu, Ting, Liu, Pengcheng, Liu, Ming
Baskı/Yayın Bilgisi:
Taylor & Francis Ltd.
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3276433972
003 UK-CbPIL
022 |a 0005-1144 
022 |a 1848-3380 
024 7 |a 10.1080/00051144.2025.2569119  |2 doi 
035 |a 3276433972 
045 2 |b d20251201  |b d20251231 
100 1 |a Hao, Zixu  |u Transportation Collage, Jilin University , Changcun , People's Republic of China 
245 1 |a Fault-tolerant control for high-speed trains based on neural network embedded compensation control 
260 |b Taylor & Francis Ltd.  |c Dec 2025 
513 |a Journal Article 
520 3 |a To address the position and velocity tracking control problems of high-speed trains (HSTs), a neural network embedded fault-tolerant control (FTC) method is proposed in this paper. The unknown resistances and interactive forces between the connected carriages are taken into account. The stability of the neural networks (NNs) embedded FTC is proved by a common formal derivative of Lyapunov function, in which an NN-embedded item is integrated with a base controller which is stable for the system. On account of the system uncertainties and actuator faults, a value adaptive sliding mode control for estimating equivalent term composed of the unknown nonlinear terms and the disturbance is used and the base FTC is designed based on this method. The results of simulations show that the method of NN embedded optimization technology proposed in this paper can compensate and optimize the performance of the base FTC with only a few conditions. In the absence of actuator faults, NN-embedded FTC proposed in this paper reduces position error by about <inline-formula> <inline-graphic xlink3ahref="taut_a_2569119_ilm0001.gif"></inline-graphic> <tex-math notation="TeX"> $ 5\% $ </tex-math> 5 % </inline-formula> and velocity error by <inline-formula> <inline-graphic xlink3ahref="taut_a_2569119_ilm0002.gif"></inline-graphic> <tex-math notation="TeX"> $ 94\% $ </tex-math> 94 % </inline-formula>. In case of actuator faults, it reduces position error by about <inline-formula> <inline-graphic xlink3ahref="taut_a_2569119_ilm0003.gif"></inline-graphic> <tex-math notation="TeX"> $ 3\% $ </tex-math> 3 % </inline-formula> and velocity error by <inline-formula> <inline-graphic xlink3ahref="taut_a_2569119_ilm0004.gif"></inline-graphic> <tex-math notation="TeX"> $ 71\% $ </tex-math> 71 % </inline-formula>. 
653 |a Velocity errors 
653 |a High speed rail 
653 |a Velocity 
653 |a Neural networks 
653 |a Tracking control 
653 |a Fault tolerance 
653 |a Optimization 
653 |a Sliding mode control 
653 |a Carriages 
653 |a Faults 
653 |a Liapunov functions 
653 |a Actuators 
653 |a Position errors 
700 1 |a Liu, Yumei  |u Transportation Collage, Jilin University , Changcun , People's Republic of China 
700 1 |a Hu, Ting  |u Transportation Collage, Jilin University , Changcun , People's Republic of China 
700 1 |a Liu, Pengcheng  |u Transportation Collage, Jilin University , Changcun , People's Republic of China 
700 1 |a Liu, Ming  |u Transportation Collage, Jilin University , Changcun , People's Republic of China 
773 0 |t Automatika  |g vol. 66, no. 4 (Dec 2025), p. 841-853 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276433972/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276433972/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch