Advanced AI techniques for video classification: a comprehensive framework using multiple feature extraction and classification methods

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Electrical Systems and Information Technology vol. 12, no. 1 (Dec 2025), p. 97
Autor principal: Khairy, Mayada
Outros Autores: Talaat, Amira Samy, Al-Makhlasawy, Rasha M.
Publicado em:
Springer Nature B.V.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3276607581
003 UK-CbPIL
022 |a 2314-7172 
024 7 |a 10.1186/s43067-025-00295-w  |2 doi 
035 |a 3276607581 
045 2 |b d20251201  |b d20251231 
100 1 |a Khairy, Mayada  |u Electronics Research Institute, Cairo, Egypt (GRID:grid.463242.5) (ISNI:0000 0004 0387 2680) 
245 1 |a Advanced AI techniques for video classification: a comprehensive framework using multiple feature extraction and classification methods 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a The increasing popularity of multimedia applications, such as video classification, has underscored the need for efficient methods to manage and categorize vast video datasets. Video classification simplifies video categorization, enhancing searchability and retrieval by leveraging distinctive features extracted from textual, audio, and visual components. This paper introduces an automated video recognition system that classifies video content based on motion types (low, medium, and high) derived from visual component characteristics. The proposed system utilizes advanced artificial intelligence techniques with four feature extraction methods; MFCC alone, (2) MFCC after applying DWT, (3) denoised MFCC, and (4) MFCC after applying denoised DWT. And seven classification algorithms to optimize accuracy. A novel aspect of this study is the application of Mel Frequency Cepstral Coefficients (MFCC) to extract features from the video domain rather than their traditional use in audio processing, demonstrating the effectiveness of MFCC for video classification. Seven classification techniques, including K-Nearest Neighbors (KNN), Radial Basis Function Support Vector Machines (SVM-RBF), Parzen Window Method, Neighborhood Components Analysis (NCA), Multinomial Logistic Regression (ML), Linear Support Vector Machines (SVM Linear), and Decision Trees (DT), are evaluated to establish a robust classification framework. Experimental results indicate that this denoising-enhanced system significantly improves classification accuracy, providing a comprehensive framework for future applications in multimedia management and other fields. 
653 |a Feature extraction 
653 |a Video data 
653 |a Classification 
653 |a Radial basis function 
653 |a Artificial intelligence 
653 |a Sentiment analysis 
653 |a Support vector machines 
653 |a Noise reduction 
653 |a Signal processing 
653 |a Decision trees 
653 |a Multimedia 
700 1 |a Talaat, Amira Samy  |u Electronics Research Institute, Cairo, Egypt (GRID:grid.463242.5) (ISNI:0000 0004 0387 2680) 
700 1 |a Al-Makhlasawy, Rasha M.  |u Electronics Research Institute, Cairo, Egypt (GRID:grid.463242.5) (ISNI:0000 0004 0387 2680) 
773 0 |t Journal of Electrical Systems and Information Technology  |g vol. 12, no. 1 (Dec 2025), p. 97 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276607581/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3276607581/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276607581/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch