An EMG Foundation Model for Neural Decoding

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:ProQuest Dissertations and Theses (2025)
מחבר ראשי: Kurbis, Andrew Garrett
יצא לאור:
ProQuest Dissertations & Theses
נושאים:
גישה מקוונת:Citation/Abstract
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3276771628
003 UK-CbPIL
020 |a 9798265446541 
035 |a 3276771628 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Kurbis, Andrew Garrett 
245 1 |a An EMG Foundation Model for Neural Decoding 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Decoding algorithms are used to predict behaviour from patterns of neural activity. Traditional decoding algorithms rely on subject-optimized models, limiting generalization and scalability to novel subjects and tasks. Building on recent advances in deep learning and large-scale data, here we developed EMGNet – an EMG foundation model for neural decoding. EMGNet was trained on over 197 hours of EMG recordings from 1,667 individuals. We uniquely used unsupervised learning to pretrain our feature encoder on unlabeled data, followed by supervised learning on our benchmark dataset of motor behaviors. Additionally, we performed large-scale architecture searches to develop a custom encoder-decoder model composed of convolutional and transformer layers, optimized for both scalability and performance. Our model consistently outperformed the state-of-the-art (i.e., subject-optimized models) across both in-distribution and out-of-distribution evaluations. For in-distribution evaluation, few-shot fine-tuning yielded an F1-score of 0.726, compared to 0.685 for subject-optimized models. For out-of-distribution evaluation on clinical populations, We achieved an F1-score of up to 0.877, compared to 0.477 for subject-optimized baselines. Taken together, our results highlight the value of foundation modeling for robust and generalizable neural decoding. By publicly releasing our pretrained weights and training pipeline, EMGNet has the potential to support future research and development in computational neuroscience and neural-machine interfaces, analogous to ImageNet in computer vision. 
653 |a Biomedical engineering 
653 |a Computer science 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3276771628/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3276771628/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch