Predicting ice supersaturation for contrail avoidance: ensemble forecasting using ICON with two-moment ice microphysics
Guardado en:
| Publicado en: | Atmospheric Chemistry and Physics vol. 25, no. 23 (2025), p. 17253-17275 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , |
| Publicado: |
Copernicus GmbH
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3276842648 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1680-7316 | ||
| 022 | |a 1680-7324 | ||
| 024 | 7 | |a 10.5194/acp-25-17253-2025 |2 doi | |
| 035 | |a 3276842648 | ||
| 045 | 2 | |b d20251201 |b d20251214 | |
| 084 | |a 123615 |2 nlm | ||
| 100 | 1 | |a Hanst, Maleen |u Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach am Main, Germany | |
| 245 | 1 | |a Predicting ice supersaturation for contrail avoidance: ensemble forecasting using ICON with two-moment ice microphysics | |
| 260 | |b Copernicus GmbH |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Persistent contrails and contrail-induced cirrus clouds are considered the most significant non-CO2 contributors to aviation's climate impact. These clouds primarily form in ice-supersaturated regions (ISSRs), defined by relative humidity over ice (RHice) exceeding 100 %. Reliable prediction of RHice in the upper troposphere and lower stratosphere allows mitigating their formation by re-routing flights. We implemented a two-moment cloud ice microphysics parameterization within a ten-member Ensemble Prediction System (EPS) using the global ICON (ICOsahedral Nonhydrostatic) model. RHice predictions were evaluated against radiosonde and aircraft observations from the Northern Hemisphere during 2024–2025. Treating ISSR prediction (RHice <inline-formula><mml:math display="inline" id="M6"><mml:mo>></mml:mo></mml:math></inline-formula> 100 %) as a binary classification problem, we find that the probability of detection (POD) of ISSRs increases to 0.6 for the two-moment scheme (ICON 2-Mom), compared to 0.4 for the operational ICON with a one-moment ice microphysics scheme, while maintaining a low false positive rate (FPR <inline-formula><mml:math display="inline" id="M7"><mml:mo><</mml:mo></mml:math></inline-formula> 0.1). Further evaluation of the ICON 2-Mom EPS using Receiver Operating Characteristic (ROC) analysis shows a POD of 0.8 for a decision model that requires at least three ensemble members to predict ISSR, with an FPR of 0.13. Additionally, we incorporate ensemble spread information to develop a meta-model that further reduces the FPR. Since June 2024, more than 100 flights have been rerouted based on ICON 2-Mom EPS predictions in a contrail avoidance trial, demonstrating the practical value of improved ISSR forecasts for climate-conscious aviation. This study highlights the significant potential of ensemble-based modeling for predicting ISSRs and RHice, supporting environmentally optimized flight planning and advancing applications in weather and climate science. | |
| 653 | |a Carbon dioxide | ||
| 653 | |a Troposphere | ||
| 653 | |a Radiosondes | ||
| 653 | |a Cirrus clouds | ||
| 653 | |a Northern Hemisphere | ||
| 653 | |a Supersaturation | ||
| 653 | |a Ice formation | ||
| 653 | |a Parameterization | ||
| 653 | |a Stratosphere | ||
| 653 | |a Climate change | ||
| 653 | |a Relative humidity | ||
| 653 | |a Aircraft | ||
| 653 | |a Ice | ||
| 653 | |a Microphysics | ||
| 653 | |a Contrails | ||
| 653 | |a Aviation | ||
| 653 | |a Upper troposphere | ||
| 653 | |a Clouds | ||
| 653 | |a Humidity | ||
| 653 | |a Emissions | ||
| 653 | |a Ensemble forecasting | ||
| 653 | |a Weather forecasting | ||
| 653 | |a Aircraft observations | ||
| 653 | |a Climate science | ||
| 653 | |a Machine learning | ||
| 653 | |a Predictions | ||
| 653 | |a Flight planning | ||
| 653 | |a Lower stratosphere | ||
| 653 | |a Climate | ||
| 653 | |a Avoidance | ||
| 653 | |a Environmental | ||
| 700 | 1 | |a Köhler, Carmen G. |u Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach am Main, Germany | |
| 700 | 1 | |a Seifert, Axel |u Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach am Main, Germany | |
| 700 | 1 | |a Schlemmer, Linda |u Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach am Main, Germany | |
| 773 | 0 | |t Atmospheric Chemistry and Physics |g vol. 25, no. 23 (2025), p. 17253-17275 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3276842648/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3276842648/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3276842648/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |