Sports Competition System Arrangement Based on an Improved Multi-Objective Optimization Algorithm

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Journal of Cases on Information Technology vol. 27, no. 1 (2025), p. 1-27
Váldodahkki: Wang, Feng
Eará dahkkit: Li, Zhengchang
Almmustuhtton:
IGI Global
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3277803901
003 UK-CbPIL
022 |a 1548-7717 
022 |a 1548-7725 
022 |a 1098-8580 
022 |a 1537-937X 
024 7 |a 10.4018/JCIT.394508  |2 doi 
035 |a 3277803901 
045 2 |b d20250101  |b d20250331 
084 |a 54251  |2 nlm 
100 1 |a Wang, Feng  |u Guangdong Ocean University, China 
245 1 |a Sports Competition System Arrangement Based on an Improved Multi-Objective Optimization Algorithm 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a This research suggests a flexible scheduling method for professional athletic events that hybridizes the tabu search with the genetic algorithms, resulting in a significant improvement in the efficiency of traditional game scheduling game-match planning outcomes. This project aims to lower the travel expenses for all participating teams. As a starting point for the experiment, data from well-known sports leagues (such as Major League Baseball and the National Basketball Association) has been utilized. The new strategy more effectively identifies superior outcomes than previous methods. Apart from devising a workable plan that satisfies all scheduling constraints, the challenge tackled in this paper is further complicated by the need to minimize travel expenses and ensure that each club plays an equal number of home games. To overcome the difficult challenge, the authors describe the issue of scheduling as a matter of optimization and use the idea of evolutionary strategy, taking into account sequential occurrences in a socially connected environment. 
653 |a Game theory 
653 |a Strategy 
653 |a Algorithms 
653 |a Baseball 
653 |a Games 
653 |a Sports 
653 |a Travel 
653 |a Professional baseball 
653 |a Basketball 
653 |a Multiple objective analysis 
653 |a Genetics 
653 |a Scheduling 
653 |a Genetic algorithms 
653 |a Tabu search 
653 |a Optimization 
653 |a Costs 
653 |a Professional basketball 
700 1 |a Li, Zhengchang  |u Guangdong Ocean University, China 
773 0 |t Journal of Cases on Information Technology  |g vol. 27, no. 1 (2025), p. 1-27 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3277803901/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3277803901/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch