Calibrating the GAMIL3-1° climate model using a derivative-free optimization method

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Geoscientific Model Development vol. 18, no. 23 (2025), p. 9293-9319
Hoofdauteur: Liang, Wenjun
Andere auteurs: Tett, Simon Frederick Barnard, Li, Lijuan, Cartis, Coralia, Xu, Danya, Dong, Wenjie, Huang, Junjie
Gepubliceerd in:
Copernicus GmbH
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3278129740
003 UK-CbPIL
022 |a 1991-962X 
022 |a 1991-9603 
024 7 |a 10.5194/gmd-18-9293-2025  |2 doi 
035 |a 3278129740 
045 2 |b d20250101  |b d20251231 
084 |a 123629  |2 nlm 
100 1 |a Liang, Wenjun  |u School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, 519082, China; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom 
245 1 |a Calibrating the GAMIL3-1° climate model using a derivative-free optimization method 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Parameterization in climate models often involves parameters that are poorly constrained by observations or theoretical understanding alone. Manual tuning by experts can be time-consuming, subjective, and prone to underestimating uncertainties. Automated tuning methods offer a promising alternative, enabling faster, objective improvements in model performance and better uncertainty quantification. This study presents an automated parameter-tuning framework that employs a derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune multiple convection-related and microphysics parameters. The framework explicitly accounts for observational and initial condition uncertainties (internal variability) to calibrate a 1° resolution atmospheric model (GAMIL3). To evaluate its performance, two main tuning experiments were conducted, targeting 10 and 20 parameters, respectively. In addition, three sensitivity experiments tested the effect of varying initial parameter values in the 10-parameter case. Both tuning experiments achieved a rapid reduction in the cost function. The 10-parameter optimization improved model accuracy for 24 of 34 key variables, while expanding to 20 parameters yielded improvement for 25 variables, though some structural model biases appeared. Ten-year AMIP simulations validated the robustness and stability of the tuning results, showing that the improvements persisted over extended simulations. Additionally, evaluations of the coupled model with optimized parameters showed, compared to the default parameters settings, reduced climate drift, a more stable climate system, and more realistic sea surface temperatures, despite a residual global energy imbalance of 2.0 W m−2 (about 1.4 W m−2 arising from the intrinsic imbalance of the atmospheric component) and some remaining regional biases. The sensitivity experiments further underscored the efficiency of the tuning algorithm and highlight the importance of expert judgment in selecting initial parameter values. This tuning framework is broadly applicable to other general circulation models (GCMs), supporting comprehensive parameter tuning and advancing model development. 
653 |a Parameters 
653 |a Climate drift 
653 |a Residual energy 
653 |a Bias 
653 |a Performance evaluation 
653 |a Sea surface temperature 
653 |a Cost function 
653 |a Surface temperature 
653 |a Parameter sensitivity 
653 |a Optimization techniques 
653 |a General circulation models 
653 |a Atmospheric models 
653 |a Calibration 
653 |a Convection 
653 |a Parameterization 
653 |a Climate system 
653 |a Uncertainty 
653 |a Climate change 
653 |a Efficiency 
653 |a Simplex method 
653 |a Simulation 
653 |a Sensitivity analysis 
653 |a Sensitivity 
653 |a Climate models 
653 |a Microphysics 
653 |a Optimization 
653 |a Tuning 
653 |a Structural models 
653 |a Climate 
653 |a Optimization algorithms 
653 |a Environmental 
700 1 |a Tett, Simon Frederick Barnard  |u School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom 
700 1 |a Li, Lijuan  |u State Key Laboratory of Earth System Numerical Modeling and Application, Chinese Academy of Sciences, Beijing, China 
700 1 |a Cartis, Coralia  |u Mathematical Institute, University of Oxford, Oxford, United Kingdom 
700 1 |a Xu, Danya  |u Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China 
700 1 |a Dong, Wenjie  |u School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, 519082, China 
700 1 |a Huang, Junjie  |u State Key Laboratory of Earth System Numerical Modeling and Application, Chinese Academy of Sciences, Beijing, China; Anhui Meteorological Information Centre, Hefei, China 
773 0 |t Geoscientific Model Development  |g vol. 18, no. 23 (2025), p. 9293-9319 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278129740/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3278129740/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3278129740/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch