BCTVNet: a 3D Hybrid segmentation neural network for clinical target volume delineation of cervical cancer brachytherapy

Zapisane w:
Opis bibliograficzny
Wydane w:Machine Learning : Science and Technology vol. 6, no. 4 (Dec 2025), p. 045056
1. autor: Gu, Yin
Kolejni autorzy: Guo, Huimin, Tu, Qisen, Gao, Yuhua, Li, Yuexian, Cui, Ming, Qian, Wei, Zhang, Lin, Ma, He
Wydane:
IOP Publishing
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3278275493
003 UK-CbPIL
022 |a 2632-2153 
024 7 |a 10.1088/2632-2153/ae2233  |2 doi 
035 |a 3278275493 
045 2 |b d20251201  |b d20251231 
100 1 |a Gu, Yin 
245 1 |a BCTVNet: a 3D Hybrid segmentation neural network for clinical target volume delineation of cervical cancer brachytherapy 
260 |b IOP Publishing  |c Dec 2025 
513 |a Journal Article 
520 3 |a Clinical target volume (CTV) delineation is essential in cervical cancer brachytherapy (BT), as accurate and automatic segmentation can improve treatment effect for patients with locally advanced disease while reducing the workload of clinicians. We propose BCTVNet (BT CTV),, a 3D hybrid neural network that integrates convolutional neural network (CNN) and transformer branches to combine strong local feature extraction with global context modeling. The 3D architecture enables the model to capture spatial relationships across slices, which is crucial for accurately identifying CTV boundaries in volumetric computed tomography (CT) data. In addition, a 3D contrast limited adaptive histogram equalization preprocessing step is applied to enhance the local contrast of soft tissues, improving anatomical structure visibility and facilitating boundary recognition. Experiments on a private BT CT dataset of 95 patients show that BCTVNet achieves superior performance compared with popular CNN-based and transformer-based segmentation models, reaching a Dice similarity coefficient (DSC) of 83.23% and a Hausdorff distance 95th percentile of 3.53 mm. Evaluation on the publicly available SegTHOR dataset further confirms its strong generalizability, achieving the highest average score among all compared methods, with a DSC of 87.09%. Multiple ablation experiments verify the effectiveness of both the hybrid architecture and the adaptive preprocessing strategy. These results demonstrate that BCTVNet provides accurate and stable CTV delineation, making it a reliable tool for clinical BT and a valuable approach for wider medical image segmentation tasks. 
653 |a Delineation 
653 |a Datasets 
653 |a Preprocessing 
653 |a Image segmentation 
653 |a Computed tomography 
653 |a Artificial neural networks 
653 |a Cancer 
653 |a Radiation therapy 
653 |a Neural networks 
653 |a Medical imaging 
653 |a Ablation 
653 |a Soft tissues 
653 |a Cervical cancer 
653 |a Metric space 
700 1 |a Guo, Huimin 
700 1 |a Tu, Qisen 
700 1 |a Gao, Yuhua 
700 1 |a Li, Yuexian 
700 1 |a Cui, Ming 
700 1 |a Qian, Wei 
700 1 |a Zhang, Lin 
700 1 |a Ma, He 
773 0 |t Machine Learning : Science and Technology  |g vol. 6, no. 4 (Dec 2025), p. 045056 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278275493/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3278275493/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch