Majorization-Minimization Based Hybrid Localization Method for High Precision Localization in Wireless Sensor Networks

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Wireless Personal Communications vol. 145, no. 1-2 (Nov 2025), p. 1
Egile nagusia: Panwar, Kuntal
Beste egile batzuk: Babu, Prabhu, Jyothi, R.
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3278316665
003 UK-CbPIL
022 |a 0929-6212 
022 |a 1572-834X 
024 7 |a 10.1007/s11277-025-11839-8  |2 doi 
035 |a 3278316665 
045 2 |b d20250101  |b d20250331 
100 1 |a Panwar, Kuntal  |u Indian Institute of Technology, Delhi, Centre for Applied Research in Electronics, New Delhi, India (GRID:grid.503024.0) (ISNI:0000 0004 6828 3019) 
245 1 |a Majorization-Minimization Based Hybrid Localization Method for High Precision Localization in Wireless Sensor Networks 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a This paper investigates the hybrid source localization problem using the four radio measurements - time of arrival (TOA), time difference of arrival (TDOA), received signal strength (RSS), and angle of arrival (AOA). First, after invoking tractable approximations in the RSS and AOA models, the maximum likelihood estimation (MLE) problem for the hybrid TOA-TDOA-RSS-AOA data model is derived. Then a weighted least-squares problem is formulated from the MLE, which is solved using the principle of the majorization-minimization (MM), resulting in an iterative algorithm with guaranteed convergence. The key feature of the proposed method is that it provides a unified framework where localization using any possible merger out of these four measurements can be implemented as per the requirement/application. Extensive numerical simulations are conducted to study the performance of the proposed method. The obtained results indicate that the hybrid localization model improves the localization accuracy compared to the heterogeneous measurements under different network scenarios, which also includes the presence of non-line of sight (NLOS) errors. 
653 |a Localization method 
653 |a Iterative algorithms 
653 |a Accuracy 
653 |a Communication 
653 |a Angle of arrival 
653 |a Sensors 
653 |a Wireless sensor networks 
653 |a Optimization 
653 |a Least squares method 
653 |a Signal strength 
653 |a Maximum likelihood estimation 
653 |a Methods 
653 |a Algorithms 
653 |a Localization 
700 1 |a Babu, Prabhu  |u Indian Institute of Technology, Delhi, Centre for Applied Research in Electronics, New Delhi, India (GRID:grid.503024.0) (ISNI:0000 0004 6828 3019) 
700 1 |a Jyothi, R.  |u University of Iowa, Department of Electrical and Computer Engineering, Iowa City, USA (GRID:grid.214572.7) (ISNI:0000 0004 1936 8294) 
773 0 |t Wireless Personal Communications  |g vol. 145, no. 1-2 (Nov 2025), p. 1 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278316665/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3278316665/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3278316665/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch