Intelligent matching algorithm for application cases of higher vocational medical microbiology laboratory courses

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Biotech Research vol. 23 (2025), p. 203-211
Autor principal: Xu, Rong
Altres autors: Wang, Xiugin, Liu, Jiachen, Hu, Dun, Chen, Jin
Publicat:
Bio Tech System
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3278345505
003 UK-CbPIL
022 |a 1944-3285 
035 |a 3278345505 
045 2 |b d20250101  |b d20251231 
084 |a 125810  |2 nlm 
100 1 |a Xu, Rong  |u School of Pharmacy, Anhui Institute of Medicine, Hefei, Anhui, China 
245 1 |a Intelligent matching algorithm for application cases of higher vocational medical microbiology laboratory courses 
260 |b Bio Tech System  |c 2025 
513 |a Journal Article 
520 3 |a In the context of digital education, efficient management and intelligent application of teaching resources for higher vocational medical microbiology experimental courses are crucial to improving teaching quality. Currently, platforms supporting these courses often rely on rudimentary matching that fails to mine deep semantic associations between cases or accurately identify similarities in core elements, leading to low matching efficiency. This research proposed an intelligent matching algorithm for application cases in higher vocational medical microbiology laboratory courses. Centered on a structured semantic model, the algorithm employed an "entity-relationship-entity" framework for multi-dimensional case analysis. A case library was constructed through processes including data collection and cleaning, knowledge graph mapping, and semantic enhancement. Targeting the characteristics of long-text case descriptions, a method integrating text summarization extraction and a relevance evaluation mechanism was introduced. Supervised datasets were built by annotating the relevance of text fragments based on core course elements, enabling iterative optimization of the evaluation mechanism for calculating precise case feature weights. For a target case, an information table was constructed, and attribute weights were determined using the knowledge granularity rough set principle combined with expert experience. Similarity was calculated via Euclidean distance measurement and subsequently converted into a similarity score. Eventually, a weighted average algorithm comprehensively evaluated similarity across multiple fields, and matching rules were formulated to achieve intelligent case matching. The results demonstrated that the proposed method performed excellently in both matching degree and speed, effectively improving overall matching efficiency. This research provided a robust technical framework for case-based teaching in vocational medical education and offered significant value to the scientific teaching community by enhancing the precision and efficiency of resource retrieval and recommendation in specialized courses. 
653 |a Teaching 
653 |a Distance measurement 
653 |a Pedagogy 
653 |a Similarity 
653 |a Medical education 
653 |a Algorithms 
653 |a Efficiency 
653 |a Laboratories 
653 |a Dimensional analysis 
653 |a Knowledge representation 
653 |a Semantics 
653 |a Matching 
653 |a Science education 
653 |a Education 
653 |a Knowledge 
653 |a Data collection 
653 |a Microbiology 
653 |a Resource Description Framework-RDF 
653 |a Libraries 
653 |a Euclidean geometry 
653 |a Social 
700 1 |a Wang, Xiugin  |u School of Medical Technology, Anhui Institute of Medicine, Hefei, Anhui, China 
700 1 |a Liu, Jiachen  |u School of Medical Technology, Anhui Institute of Medicine, Hefei, Anhui, China 
700 1 |a Hu, Dun  |u School of Medical Technology, Anhui Institute of Medicine, Hefei, Anhui, China 
700 1 |a Chen, Jin  |u School of Medical Technology, Anhui Institute of Medicine, Hefei, Anhui, China 
773 0 |t Journal of Biotech Research  |g vol. 23 (2025), p. 203-211 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278345505/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3278345505/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3278345505/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch