Vegetation and Soil Types Affect Microbial Carbon Metabolism in the Black Soil Region of Northeast China

Guardado en:
Detalles Bibliográficos
Publicado en:Eurasian Soil Science vol. 58, no. 13 (Dec 2025), p. 201
Autor principal: Chen, Yang
Otros Autores: Zhang, Li, Meng, Siyan, Fan, Linlin, Wang, Guangxin, Yu, Bing
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3278658142
003 UK-CbPIL
022 |a 1064-2293 
022 |a 1556-195X 
022 |a 0038-5832 
024 7 |a 10.1134/S1064229325602884  |2 doi 
035 |a 3278658142 
045 2 |b d20251201  |b d20251231 
084 |a 108320  |2 nlm 
100 1 |a Chen, Yang  |u College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China (GRID:grid.412246.7) (ISNI:0000 0004 1789 9091) 
245 1 |a Vegetation and Soil Types Affect Microbial Carbon Metabolism in the Black Soil Region of Northeast China 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study explored the ecological functions and environmental effects of soil microorganisms in the black soil region by examining microbial carbon source metabolic capacity across four vegetation types (reed wetland, maize field, paddy field, aspen woodland) and three soil types (Histosols, Planosols, Gleysols) in the Naoli River Reserve, with soil samples collected at a depth of 0–20 cm. Using Biolog-ECO microplate technology, we assessed soil microbial carbon source metabolic activity, utilization patterns, and functional diversity. Structural equation modeling and random forest analysis were applied to explore the influence of environmental factors on microbial carbon metabolism. Results showed that microbial carbon metabolic activity was highest in maize fields and Histosols, exceeding that in paddy fields and Gleysols. Microorganisms preferred amino acids, polymers, and carboxylic acids over carbohydrates, amines, and phenolic acids. The Simpson index of microbial diversity was positively correlated with microbial biomass carbon and moisture content, while Chao1 and Ace indices were correlated with microbial biomass phosphorus. Key microbial phyla, such as Bacteroides and Monomonas, were closely related to carbon source utilization. The structural equation modeling indicated that microbial biomass carbon, microbial biomass nitrogen, and soil organic carbon were the main drivers of microbial carbon metabolism. The RF model identified i-erythritol as a key predictor of microbial carbon metabolism, and amines as the best predictor of average well color development (AWCD) changes. The McIntosh index was the most influential variable for AWCD variation. These findings provide a scientific basis for evaluating soil health and supporting sustainable black soil management. 
651 4 |a China 
653 |a Phenolic acids 
653 |a Biogeochemistry 
653 |a Phosphorus 
653 |a Biomass 
653 |a Metabolism 
653 |a Rice fields 
653 |a Vegetation 
653 |a Water depth 
653 |a Soil types 
653 |a Soil microorganisms 
653 |a Ecological function 
653 |a Moisture content 
653 |a Carbohydrates 
653 |a Amino acids 
653 |a Climate change 
653 |a Soil 
653 |a Carboxylic acids 
653 |a Wetlands 
653 |a Nitrogen 
653 |a Soil management 
653 |a Microorganisms 
653 |a Precipitation 
653 |a Greenhouse gases 
653 |a Soil fertility 
653 |a Environmental effects 
653 |a Corn 
653 |a Environmental factors 
653 |a Woodlands 
653 |a Plates 
653 |a Organic carbon 
653 |a Flowers & plants 
653 |a Polymers 
653 |a Modelling 
653 |a Amines 
653 |a Carbon sources 
653 |a Decomposition 
653 |a Ecosystems 
653 |a Ecological effects 
653 |a Water content 
653 |a Carbon sequestration 
653 |a River ecology 
653 |a Carbon cycle 
653 |a Structure-function relationships 
653 |a Environmental 
700 1 |a Zhang, Li  |u College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China (GRID:grid.412246.7) (ISNI:0000 0004 1789 9091) 
700 1 |a Meng, Siyan  |u College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China (GRID:grid.412246.7) (ISNI:0000 0004 1789 9091) 
700 1 |a Fan, Linlin  |u College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China (GRID:grid.412246.7) (ISNI:0000 0004 1789 9091) 
700 1 |a Wang, Guangxin  |u Heilongjiang Naoli River National Nature Reserve Administration, Shuangyashan, China (GRID:grid.412246.7) 
700 1 |a Yu, Bing  |u College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China (GRID:grid.412246.7) (ISNI:0000 0004 1789 9091) 
773 0 |t Eurasian Soil Science  |g vol. 58, no. 13 (Dec 2025), p. 201 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278658142/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3278658142/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch