Transparent Nutrition: An Explainable AI-based Diet Tracking System for Preventing Nutrition-Related Disorders

Guardado en:
Detalles Bibliográficos
Publicado en:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 1798-1803
Autor principal: Sanitha, P C
Otros Autores: Parveen, Syed Nageena, Shaik Thaherbasha, Shanmugapriya, M, Kalaivani, T, Senthilkumar, R
Publicado:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3278705812
003 UK-CbPIL
024 7 |a 10.1109/ICoICI65217.2025.11252549  |2 doi 
035 |a 3278705812 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Sanitha, P C  |u Artificial Intelligence and Data Science Dhanalakshmi Srinivasan College of Engineering,Coimbatore 
245 1 |a Transparent Nutrition: An Explainable AI-based Diet Tracking System for Preventing Nutrition-Related Disorders 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 3rd International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI)Conference Start Date: 2025 Sept. 17Conference End Date: 2025 Sept. 19Conference Location: Coimbatore, IndiaThe growing incidence of nutrition-related diseases, including obesity, diabetes mellitus, iron-deficiency anemia, and cardiovascular disease, calls for an accurate, personalized, and transparent dietary monitoring tool. Where past diet tracking apps are the product of user input or general food data, they often fall short of providing the requisite intelligence or explainability to accurately assess nutrient content and health high-risk status. Herein we present an Explainable AI (XAI) based diet tracking system that uses deep learning for automated food recognition, and machine learning for and nutrient estimation and interpretable models to assess the health risks of potential dietary imbalances. Given a food image, the system identifies consumed food items, measures key nutrients (such as calories, sugar, and iron) and identifies an imbalance in nutrient consumption that may cause or worsen nutrition-related disease. To enhance trust and transparency, we use SHapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) to showcase how much each piece of dietary information contributed to nutrient limits and health predictions. Results from experiments on the Food-101 dataset and nutrition databases demonstrate our system’s ability to deliver reliable, real-time, and explainable dietary feedback, leveraging XAI for meaningful preventive health taking into consideration user and clinician health implications. 
653 |a Anemia 
653 |a Internet of Things 
653 |a Diet 
653 |a Food 
653 |a Iron 
653 |a Cardiovascular diseases 
653 |a Tracking systems 
653 |a Nutrition 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Nutrient content 
653 |a Nutrients 
653 |a Cyber-physical systems 
653 |a Diabetes mellitus 
653 |a Nutrient status 
653 |a Deep learning 
653 |a Real time 
653 |a Health risks 
653 |a Social 
700 1 |a Parveen, Syed Nageena  |u SR University,Department of Electronics and Communication Engineering,Warangal 
700 1 |a Shaik Thaherbasha  |u SR University,Department of Electronics and Communication Engineering,Warangal 
700 1 |a Shanmugapriya, M  |u Karpagam Academy of Higher Education,Faculty of Engineering,Department of Cyber Security 
700 1 |a Kalaivani, T  |u Sri Eshwar College of Engineering,Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning),Coimbatore 
700 1 |a Senthilkumar, R  |u Hindusthan Institute of Technology,Department of Computer Science and Engineering,Coimbatore 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 1798-1803 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278705812/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch