Old Rules in a New Game: Mapping Uncertainty Quantification to Quantum Machine Learning

Guardat en:
Dades bibliogràfiques
Publicat a:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 1803-1814
Autor principal: Wendlinger, Maximilian
Altres autors: Kilian Tscharke, Debus, Pascal
Publicat:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Matèries:
Accés en línia:Citation/Abstract
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3278707129
003 UK-CbPIL
024 7 |a 10.1109/QCE65121.2025.00198  |2 doi 
035 |a 3278707129 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Wendlinger, Maximilian  |u Quantum Security Technologies, Fraunhofer Institute for Applied and Integrated Security,Garching near Munich,Germany 
245 1 |a Old Rules in a New Game: Mapping Uncertainty Quantification to Quantum Machine Learning 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 IEEE International Conference on Quantum Computing and Engineering (QCE)Conference Start Date: 2025 Aug. 30Conference End Date: 2025 Sept. 5Conference Location: Albuquerque, NM, USAOne of the key obstacles in traditional deep learning is the reduction in model transparency caused by increasingly intricate model functions, which can lead to problems such as overfitting and excessive confidence in predictions. With the advent of quantum machine learning offering possible advances in computational power and latent space complexity, we notice the same opaque behavior. Despite significant research in classical contexts, there has been little advancement in addressing the black-box nature of quantum machine learning. Consequently, we approach this gap by building upon existing work in classical uncertainty quantification and initial explorations in quantum Bayesian modeling to theoretically develop and empirically evaluate techniques to map classical uncertainty quantification methods to the quantum machine learning domain. Our findings emphasize the necessity of leveraging classical insights into uncertainty quantification to include uncertainty awareness in the process of designing new quantum machine learning models. 
653 |a Machine learning 
653 |a Quantum computing 
653 |a Deep learning 
653 |a Uncertainty 
653 |a Economic 
700 1 |a Kilian Tscharke  |u Quantum Security Technologies, Fraunhofer Institute for Applied and Integrated Security,Garching near Munich,Germany 
700 1 |a Debus, Pascal  |u Quantum Security Technologies, Fraunhofer Institute for Applied and Integrated Security,Garching near Munich,Germany 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 1803-1814 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278707129/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch