Quantum Autoencoder for Multivariate Time Series Anomaly Detection

Guardat en:
Dades bibliogràfiques
Publicat a:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 2470-2481
Autor principal: Kilian Tscharke
Altres autors: Wendlinger, Maximilian, Ahouzi, Afrae, Bhardwaj, Pallavi, Amoi-Taleghani, Kaweh, Schrodl-Baumann, Michael, Debus, Pascal
Publicat:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Matèries:
Accés en línia:Citation/Abstract
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3278707504
003 UK-CbPIL
024 7 |a 10.1109/QCE65121.2025.00268  |2 doi 
035 |a 3278707504 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Kilian Tscharke  |u Fraunhofer Institute for Applied and Integrated Security (AISEC),Germany 
245 1 |a Quantum Autoencoder for Multivariate Time Series Anomaly Detection 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 IEEE International Conference on Quantum Computing and Engineering (QCE)Conference Start Date: 2025 Aug. 30Conference End Date: 2025 Sept. 5Conference Location: Albuquerque, NM, USAAnomaly Detection (AD) defines the task of identifying observations or events that deviate from typical - or normal - patterns, a critical capability in IT security for recognizing incidents such as system misconfigurations, malware infections, or cyberattacks. In enterprise environments like SAP HANA Cloud systems, this task often involves monitoring high-dimensional, multivariate time series (MTS) derived from telemetry and log data. With the advent of quantum machine learning offering efficient calculations in high-dimensional latent spaces, many avenues open for dealing with such complex data. One approach is the Quantum Autoencoder (QAE), an emerging and promising method with potential for application in both data compression and AD. However, prior applications of QAEs to time series AD have been restricted to univariate data, limiting their relevance for real-world enterprise systems. In this work, we introduce a novel QAE-based framework designed specifically for MTS AD towards enterprise scale. We theoretically develop and experimentally validate the architecture, demonstrating that our QAE achieves performance competitive with neural-network-based autoencoders while requiring fewer trainable parameters. We evaluate our model on datasets that closely reflect SAP system telemetry and show that the proposed QAE is a viable and efficient alternative for semisupervised AD in real-world enterprise settings. 
653 |a Telemetry 
653 |a Quantum computing 
653 |a Neural networks 
653 |a Data compression 
653 |a Multivariate analysis 
653 |a Machine learning 
653 |a Anomalies 
653 |a Time series 
653 |a Environmental 
700 1 |a Wendlinger, Maximilian  |u Fraunhofer Institute for Applied and Integrated Security (AISEC),Germany 
700 1 |a Ahouzi, Afrae  |u Fraunhofer Institute for Applied and Integrated Security (AISEC),Germany 
700 1 |a Bhardwaj, Pallavi  |u SAP SE,Walldorf,Germany 
700 1 |a Amoi-Taleghani, Kaweh  |u SAP SE,Walldorf,Germany 
700 1 |a Schrodl-Baumann, Michael  |u SAP SE,Walldorf,Germany 
700 1 |a Debus, Pascal  |u Fraunhofer Institute for Applied and Integrated Security (AISEC),Germany 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 2470-2481 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3278707504/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch