AI Intelligent Tutoring System Tailored to the Students' Personality and Neurodiversity

保存先:
書誌詳細
出版年:European Conference on e-Learning (Oct 2025), p. 297-306
第一著者: Nalli, Giacomo
その他の著者: Kapetanakis, Stelios, Nguyen, Khuong An
出版事項:
Academic Conferences International Limited
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3279070996
003 UK-CbPIL
022 |a 2048-8637 
022 |a 2048-8645 
035 |a 3279070996 
045 2 |b d20251001  |b d20251031 
084 |a 183529  |2 nlm 
100 1 |a Nalli, Giacomo  |u Computer Science, Science and Technology, Middlesex University London, UK 
245 1 |a AI Intelligent Tutoring System Tailored to the Students' Personality and Neurodiversity 
260 |b Academic Conferences International Limited  |c Oct 2025 
513 |a Conference Proceedings 
520 3 |a Over the past few years, several Universities and Educational Institutes have introduced e-learning platforms to support robust alternatives to face-to-face teaching, where students can benefit from them by revisiting topics covered in class without the constraints of time and space. However, despite this considerable flexibility, the role of the instructor as a facilitator is crucial to support learners when they have doubts on their learning or get stuck, by encouraging them to consider suitable strategies to approach the problem, or by providing clarification on some organisational aspects of the module. Providing quality feedback that is tailored to the individual needs of each learner, including personality and neurodiversity, is a challenging task for educators. Developing different methods of learner-specific feedback increases the workload and often fails to fully address learning gaps. The lecturer's empathy, which consists of a deep understanding of students' personal and social situations, care and concern for students' emotions, and compassionate responses, also poses a critical role in student success. Several intelligent tutoring systems have been implemented in e-learning platforms to try to provide immediate feedback to support students, but they focus more on providing feedback on content and often don't tailor feedback with adaptive empathy based on different students' personalities or neurodiversity. In this paper, an AI intelligent tutoring system based on LLM has been implemented within an e-learning platform, fine-tuned to the content and organisational aspects of the final year project module in the IT programme, with the aim of providing immediate feedback based on students' requests. The software can tailor comments to each student's personality and, where appropriate, neurodiversity, for example, showing genuine interest in responses from introverts or paraphrasing content to improve written comprehension for dyslexics. The neurodiversity information was taken from the user's profile, while personality was extracted using the MBTI (Myers-Briggs Type Indicator). Finally, the software was tested using a bespoke algorithm consisting in a matchmaking process able to detect the level of communication strategies (empathy, creativity, sensitivity) by cross matching the responses received with open online dictionaries to evaluate the effectiveness of the tailored responses. 
653 |a Personality tests 
653 |a Software 
653 |a Students 
653 |a Teaching methods 
653 |a Neurodiversity 
653 |a Feedback 
653 |a Personality 
653 |a Questionnaires 
653 |a Modules 
653 |a Performance evaluation 
653 |a Teachers 
653 |a Chatbots 
653 |a Colleges & universities 
653 |a Tutoring 
653 |a Flexibility 
653 |a Online instruction 
653 |a Empathy 
653 |a Distance learning 
653 |a Learning 
653 |a Educational Resources 
653 |a Intelligent Tutoring Systems 
653 |a Distance Education 
653 |a Active Learning 
653 |a Educational Methods 
653 |a Learning Processes 
653 |a Academic Achievement 
653 |a Database Design 
653 |a Learning Experience 
653 |a Educational Technology 
653 |a Educational Change 
653 |a Feedback (Response) 
653 |a Intelligence 
653 |a Electronic Learning 
653 |a In Person Learning 
653 |a Creativity 
653 |a Communication Strategies 
653 |a Lexicology 
653 |a Database Management Systems 
653 |a Computer Software 
653 |a Learner Engagement 
653 |a Individual Needs 
653 |a Educational Strategies 
653 |a Algorithms 
700 1 |a Kapetanakis, Stelios  |u Distributed Labs, Distributed Analytics Solutions, London, 30 Churchill Pl, London, UK 
700 1 |a Nguyen, Khuong An  |u Computer Science Department, Royal Holloway University of London, Surrey, UK 
773 0 |t European Conference on e-Learning  |g (Oct 2025), p. 297-306 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279070996/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3279070996/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279070996/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch