Concentrating nonnegative solutions for double phase Choquard problems
Guardado en:
| Publicado en: | Fixed Point Theory and Algorithms for Sciences and Engineering vol. 28, no. 1 (Mar 2026), p. 2 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | This paper deals with the multiplicity and concentration phenomenon of nonnegative solutions for the following double phase Choquard equation <disp-formula id="Equ69">-div(|∇u|p-2∇u+Uε(x)|∇u|q-2∇u)+Vε(x)(|u|p-2u+Uε(x)|u|q-2u)=∫RN1|x|μ∗F(u)f(u)inRN,</disp-formula>where ε is a positive parameter, N≥2,1<p<q<N,q<2p,q<p∗ with p∗=NpN-p,0<μ<p, the function U:RN→R is continuous, Uε(x)=U(εx),V:RN→R is a continuous potential and satisfies a local minimum condition, Vε(x)=V(εx),f:R→R is a continuous subcritical nonlinearity in the sense of Hardy–Littlewood–Sobolev inequality and F is the primitive of f. Based on the variational methods and topological arguments, the connection between the multiplicity of solutions and the topological structure of the potential at the local minimum points is established. |
|---|---|
| ISSN: | 2730-5422 1687-1820 1687-1812 |
| DOI: | 10.1007/s11784-025-01256-6 |
| Fuente: | Advanced Technologies & Aerospace Database |