Atomic force microscope protocols for characterising the elastoviscoplastic biomechanical properties of corneocytes

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Communications Biology vol. 8, no. 1 (2025), p. 1747-1760
المؤلف الرئيسي: Évora, Ana S.
مؤلفون آخرون: Zhang, Zhihua, Johnson, Simon A., Zhang, Zhibing, Adams, Michael J.
منشور في:
Nature Publishing Group
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3279546667
003 UK-CbPIL
022 |a 2399-3642 
024 7 |a 10.1038/s42003-025-09142-0  |2 doi 
035 |a 3279546667 
045 2 |b d20250101  |b d20251231 
100 1 |a Évora, Ana S.  |u School of Chemical Engineering, University of Birmingham, Birmingham, UK (ROR: https://ror.org/03angcq70) (GRID: grid.6572.6) (ISNI: 0000 0004 1936 7486) 
245 1 |a Atomic force microscope protocols for characterising the elastoviscoplastic biomechanical properties of corneocytes 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Corneocytes, the fundamental units of the epidermis outer layer, are essential for skin’s barrier function. This study employs Atomic Force Microscopy (AFM) to explore the topographical and biomechanical properties of volar forearm cells. A detailed protocol is presented to eliminate experimental artefacts that have led to variability in reported Young’s moduli. The goal is to create a consistent material model reflecting the elastic and inelastic behaviour of corneocytes. Using standard sharp AFM probes allows for accurate cell topography capture and targeted indentation for mechanical property measurements without changing probes. The methodology for interpreting mechanical data from sharp indenters is also addressed. Results indicate that corneocytes in a dry state exhibit Young’s moduli similar to glassy organic polymers and demonstrate viscoplastic behaviour, described by the Herschel-Bulkley model. These detailed protocols enhance our understanding of skin biomechanics, potentially guiding advancements in biomimetic materials and dermatological studies.AFM nanoindentation study reveals unique biomechanical properties of corneocytes, demonstrating glassy polymer-like elasticity and complex viscoplastic behaviour crucial for understanding skin mechanics. 
653 |a Mechanical properties 
653 |a Topography 
653 |a Calibration 
653 |a Environmental scanning 
653 |a Atomic force microscopy 
653 |a Skin 
653 |a Deformation 
653 |a Epidermis 
653 |a Geometry 
653 |a Biomechanics 
653 |a Probes 
653 |a Scanning electron microscopy 
700 1 |a Zhang, Zhihua  |u School of Chemical Engineering, University of Birmingham, Birmingham, UK (ROR: https://ror.org/03angcq70) (GRID: grid.6572.6) (ISNI: 0000 0004 1936 7486) 
700 1 |a Johnson, Simon A.  |u School of Chemical Engineering, University of Birmingham, Birmingham, UK (ROR: https://ror.org/03angcq70) (GRID: grid.6572.6) (ISNI: 0000 0004 1936 7486) 
700 1 |a Zhang, Zhibing  |u School of Chemical Engineering, University of Birmingham, Birmingham, UK (ROR: https://ror.org/03angcq70) (GRID: grid.6572.6) (ISNI: 0000 0004 1936 7486) 
700 1 |a Adams, Michael J.  |u School of Chemical Engineering, University of Birmingham, Birmingham, UK (ROR: https://ror.org/03angcq70) (GRID: grid.6572.6) (ISNI: 0000 0004 1936 7486) 
773 0 |t Communications Biology  |g vol. 8, no. 1 (2025), p. 1747-1760 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279546667/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3279546667/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279546667/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch