Nominal elastic modulus assessment in 3D-printed components under varying printing parameters using Bayesian methods and random forest surrogate modeling

保存先:
書誌詳細
出版年:PLoS One vol. 20, no. 12 (Dec 2025), p. e0338204
第一著者: Zhang, Jin
その他の著者: Lu, Lili, Feng, Ping, Zhu, Ting
出版事項:
Public Library of Science
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3279857327
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0338204  |2 doi 
035 |a 3279857327 
045 2 |b d20251201  |b d20251231 
084 |a 174835  |2 nlm 
100 1 |a Zhang, Jin 
245 1 |a Nominal elastic modulus assessment in 3D-printed components under varying printing parameters using Bayesian methods and random forest surrogate modeling 
260 |b Public Library of Science  |c Dec 2025 
513 |a Journal Article 
520 3 |a The expanding range of materials available for 3D printing is driving its widespread adoption in advanced fields. As 3D printing becomes increasingly prevalent in the manufacturing of industrial components, its advantages in accommodating complex geometries and reducing material waste are attracting significant attention. Acquiring and applying precise elastic properties of materials during structural design is crucial for ensuring part safety and consistency. However, non-destructive mechanical property assessment methods remain limited. In this paper, we propose an efficient surrogate model, built using a Bayesian model updating approach combined with a random forest algorithm, to achieve high-precision calibration of material elastic constants. In the experiment, samples were 3D printed using fused deposition modeling, and modal information was obtained using operational modal analysis with one end fixed to simulate cantilever beam boundary conditions. Parameter updating was then performed within a Bayesian Markov Chain Monte Carlo framework. The deviation between the updated calculated frequencies and the measured frequencies was significantly reduced, and the Modal Assurance Criterion value between the updated calculated mode shapes and the measured mode shapes was higher than 0.99, demonstrating the accuracy of the updated parameters. Compared to traditional destructive testing methods, the proposed method directly calibrates the structural elastic modulus at the component level without affecting the normal use of the component, providing a more practical approach for the analysis and research of material properties in 3D printing additive manufacturing. The related technology can be extended to other structural forms of 3D-printed products. 
653 |a Mechanical properties 
653 |a Fused deposition modeling 
653 |a Structural engineering 
653 |a Accuracy 
653 |a Markov chains 
653 |a Nondestructive testing 
653 |a Boundary conditions 
653 |a Material properties 
653 |a Elastic properties 
653 |a Parameter identification 
653 |a Calibration 
653 |a Printed materials 
653 |a Structural design 
653 |a Modal analysis 
653 |a Three dimensional printing 
653 |a Manufacturing 
653 |a Modal assurance criterion 
653 |a Structural forms 
653 |a Bayesian analysis 
653 |a Composite materials 
653 |a Cantilever beams 
653 |a Destructive testing 
653 |a Shear tests 
653 |a Costs 
653 |a Modulus of elasticity 
653 |a Rapid prototyping 
653 |a Porous materials 
653 |a 3-D printers 
653 |a Methods 
653 |a Parameters 
653 |a Markov analysis 
653 |a Model updating 
653 |a Environmental 
700 1 |a Lu, Lili 
700 1 |a Feng, Ping 
700 1 |a Zhu, Ting 
773 0 |t PLoS One  |g vol. 20, no. 12 (Dec 2025), p. e0338204 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279857327/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3279857327/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279857327/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch