Effects of water-rock interaction on the dynamic mechanical properties and energy dissipation of pre-damaged granite

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS One vol. 20, no. 12 (Dec 2025), p. e0331541
1. Verfasser: Wen, Zilong
Weitere Verfasser: Chu, Huaibao, Chen, Luyang, Yang, Xiaolin, Wei, Haixia, Jiao, Huazhe, Yang, Jinjin, Chen, Fengbin
Veröffentlicht:
Public Library of Science
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3279857487
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0331541  |2 doi 
035 |a 3279857487 
045 2 |b d20251201  |b d20251231 
084 |a 174835  |2 nlm 
100 1 |a Wen, Zilong 
245 1 |a Effects of water-rock interaction on the dynamic mechanical properties and energy dissipation of pre-damaged granite 
260 |b Public Library of Science  |c Dec 2025 
513 |a Journal Article 
520 3 |a In deep rock mining, the surrounding rock is often simultaneously subjected to both an initial damage level induced by engineering disturbances and the effects of groundwater, and its stability is crucial for project safety. In this study, we take granite from a mine in Eastern China as the research object and conduct the Hopkinson test, electron microscope scanning test, X-ray diffraction (XRD) test, and elastic longitudinal wave velocity test under varying initial damage level and moisture content conditions. The main purpose of this study is to reveal the variation patterns of the dynamic mechanical properties and energy dissipation of granite specimens under the coupling effect of initial damage level and moisture content. The results show that the dynamic peak stress and peak modulus of granite specimens gradually decrease with increasing initial damage level and moisture content, reaching reductions of 41.6% and 60.6%, respectively, under an initial damage level of 28% and forced saturation. The water-damage weakening coefficient of the specimen increases as the initial damage level rises, making the water weakening effect more pronounced. At a constant initial damage level, the energy dissipation density of the specimen first increases and then decreases as the moisture content increases. As the initial damage level and moisture content increase, the fractal dimension of the specimen increases from 1.801 to 1.865, and the microscopic failure mode transitions from transgranular fracture to mixed-mode fracture, ultimately becoming dominated by intergranular fracture.The research results provide a reference for the stability evaluation and disaster prevention of deep rock mass engineering in water-rich conditions. 
651 4 |a China 
653 |a Mechanical properties 
653 |a Wave velocity 
653 |a Rock masses 
653 |a Fractal geometry 
653 |a Ductile-brittle transition 
653 |a Water 
653 |a Rocks 
653 |a X-ray diffraction 
653 |a Moisture content 
653 |a Mining 
653 |a Dynamic mechanical properties 
653 |a Emergency preparedness 
653 |a Granite 
653 |a Energy dissipation 
653 |a Water content 
653 |a Geology 
653 |a Transgranular fracture 
653 |a Velocity 
653 |a Wave diffraction 
653 |a Mineral resources 
653 |a Failure modes 
653 |a Groundwater effects 
653 |a Longitudinal waves 
653 |a Groundwater 
653 |a Engineering 
653 |a Stability 
653 |a Stone 
653 |a Water damage 
653 |a Intergranular fracture 
653 |a Environmental 
700 1 |a Chu, Huaibao 
700 1 |a Chen, Luyang 
700 1 |a Yang, Xiaolin 
700 1 |a Wei, Haixia 
700 1 |a Jiao, Huazhe 
700 1 |a Yang, Jinjin 
700 1 |a Chen, Fengbin 
773 0 |t PLoS One  |g vol. 20, no. 12 (Dec 2025), p. e0331541 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279857487/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3279857487/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279857487/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch