Multivariate Statistical Control of Energy Signatures in Brewery Production Process

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Physics: Conference Series vol. 3143, no. 1 (Dec 2025), p. 012101
Autor principal: Amoresano, A.
Altres autors: Barrasso, M., Quaremba, G.
Publicat:
IOP Publishing
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3279910502
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3143/1/012101  |2 doi 
035 |a 3279910502 
045 2 |b d20251201  |b d20251231 
100 1 |a Amoresano, A. 
245 1 |a Multivariate Statistical Control of Energy Signatures in Brewery Production Process 
260 |b IOP Publishing  |c Dec 2025 
513 |a Journal Article 
520 3 |a In industrial settings, quality monitoring is essential to ensure the reliability, traceability, and efficiency of production processes. This study presents an analysis of principant component (PCA) approach for multivariate statistical process control of signals collected from sensors installed throughout the stages of a brewing plant’s production cycle. The strategic placement of sensors enables continuous and integrated monitoring, capturing meaningful data from raw materials to the finished product. The methodology is structured in two phases: Phase I involves building a statistical model using historical in-control data; Phase II applies this model to monitor new observations. The PCA enables dimensionality reduction and highlights the main directions of process variability. Anomalies are detected through two control indices: Hotelling’s T2, measuring variation within the principal component subspace, and the Squared Prediction Error (SPE), capturing residual variance. Control limits are derived from theoretical distributions: β and F for T², and a moment-based approach (up to third order) for SPE. A significance level α aligned with Six Sigma practices ensures a balanced trade-off between sensitivity and false alarm rate. The model proved effective in automatically identifying out-of-control observations and in iteratively improving the quality of the monitoring system. Although validated on a specific case study, the proposed framework is generalizable to any multi-stage, sensor-monitored production system. It offers a flexible and robust tool for predictive maintenance, early anomaly detection, and quality control optimization in complex industrial environments. 
653 |a Quality control 
653 |a Principal components analysis 
653 |a Sensors 
653 |a False alarms 
653 |a Control data (computers) 
653 |a Process controls 
653 |a Statistical process control 
653 |a Multivariate analysis 
653 |a Control limits 
653 |a Raw materials 
653 |a Anomalies 
653 |a Monitoring 
653 |a Statistical models 
653 |a Predictive maintenance 
700 1 |a Barrasso, M. 
700 1 |a Quaremba, G. 
773 0 |t Journal of Physics: Conference Series  |g vol. 3143, no. 1 (Dec 2025), p. 012101 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279910502/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279910502/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch