Data-driven wind farm power forecasting with Numerical weather predictions and SCADA data

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Physics: Conference Series vol. 3143, no. 1 (Dec 2025), p. 012012
Autor principal: Francesco Barnabei, Valerio
Otros Autores: Bianchi, Gianmarco, Carlo Maria Ancora, Tullio, Abbadessa, Gabriele, Corsini, Alessandro, Gentile, Sabrina, Giberti, Laura, Melani, Alessandro, Sala, Simone, Amendola, Alfonso
Publicado:
IOP Publishing
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3279910665
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3143/1/012012  |2 doi 
035 |a 3279910665 
045 2 |b d20251201  |b d20251231 
100 1 |a Francesco Barnabei, Valerio 
245 1 |a Data-driven wind farm power forecasting with Numerical weather predictions and SCADA data 
260 |b IOP Publishing  |c Dec 2025 
513 |a Journal Article 
520 3 |a Wind energy generation is becoming increasingly significant in the clean energy transition. On the one hand, enhancing the overall efficiency of wind farms presentsan obvious challenge to the broader adoption of this technology in the power productionlandscape. On the other hand, due to the nondeterministic nature of the primary energysource, improving the reliability of wind power plants is essential to ensure their effective and sustainable integration into the energy network. In this scenario, access to accurate power forecasts allows more effective planning of electrical load management, greater profits in the day-ahead energy market, and could improve the efficiency of operation and maintenance due to better planning of unit commitment and scheduling by system operators. However, the non-stationarity, randomness, and intermittency of the wind source make wind power forecasting particularly challenging. To address this challenge, this work presents a data-driven power forecasting framework to handle turbine-level time series collected from SCADA systems, capturing the operational state of the turbines and numerical weather prediction data, available on a grid of points centered on the wind farm. The latter, in addition to being inherently affected by uncertainty, are also available at locations that do not coincide with the actual positions of the turbines. As a result, the framework aims to build a spatial transfer function capable of transporting the forecast information to the exact points where the turbines are installed, while also incorporating SCADA-based operational data, leveraging real-time turbine status indicators. In this work, different model architectures are explored and applied to different subsets of input variables to generate multi-horizon forecasts with a maximum lead time of 24 hours. Furthermore, the approach is tested both by considering multiple turbinesand training a separate model for each, as well as by training a single farm-level model. 
653 |a Turbines 
653 |a Electrical loads 
653 |a Lead time 
653 |a Wind power 
653 |a Wind farms 
653 |a Clean energy 
653 |a Wind turbines 
653 |a Supervisory control and data acquisition 
653 |a Weather forecasting 
653 |a Unit commitment 
653 |a Numerical weather forecasting 
653 |a Real time 
653 |a Power plants 
653 |a Transfer functions 
700 1 |a Bianchi, Gianmarco 
700 1 |a Carlo Maria Ancora, Tullio 
700 1 |a Abbadessa, Gabriele 
700 1 |a Corsini, Alessandro 
700 1 |a Gentile, Sabrina 
700 1 |a Giberti, Laura 
700 1 |a Melani, Alessandro 
700 1 |a Sala, Simone 
700 1 |a Amendola, Alfonso 
773 0 |t Journal of Physics: Conference Series  |g vol. 3143, no. 1 (Dec 2025), p. 012012 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279910665/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279910665/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch