Zipping and Routing: Provable and Practical Algorithms in Trees, Tries, and Graphs

Sparad:
Bibliografiska uppgifter
I publikationen:ProQuest Dissertations and Theses (2025)
Huvudupphov: Gila, Ofek
Utgiven:
ProQuest Dissertations & Theses
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3280325714
003 UK-CbPIL
020 |a 9798265471628 
035 |a 3280325714 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Gila, Ofek 
245 1 |a Zipping and Routing: Provable and Practical Algorithms in Trees, Tries, and Graphs 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The design of algorithms often involves a trade-off between theoretical guarantees and real-world performance, especially in terms of time, memory, and simplicity. Provable and practical algorithms seek to bridge this gap, offering both rigorous analysis and empirical validation of their efficiency. In this dissertation, we provide novel, practical, and provable algorithms for organizing and searching data, and for modeling and routing in networks.First, we focus on data organization and search. We introduce zip-zip trees, a simple randomized variant of zip trees that achieves optimal expected node depth and strong history independence using only O(log log n) bits of metadata per node, an exponential improvement over prior work. We then extend this “zipping” technique to strings, creating zip-tries, a dynamic and memory-efficient trie structure that performs competitively with state-of-the-art data structures for long strings.Second, we study greedy routing in small-world networks. We introduce new graph models, including the windowed Neighborhood Preferential Attachment model, that achieve O(log n) or O(log1+ε n) greedy routing and generalize these results beyond simple lattices by defining fixed-growth graphs of a given dimensionality α. We prove tight bounds for greedy routing and diameters in these graphs and show empirically that this model better represents real-world road networks, improving routing performance over previous work. 
653 |a Computer science 
653 |a Applied mathematics 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280325714/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280325714/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch