Context-Aware Semantic Forgery Detection in Biomedical & Natural Images

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Nandi, Soumyaroop
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280355433
003 UK-CbPIL
020 |a 9798265470966 
035 |a 3280355433 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Nandi, Soumyaroop 
245 1 |a Context-Aware Semantic Forgery Detection in Biomedical & Natural Images 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Trust in visual evidence increasingly depends on reliable image forgery detection and localization. Although evaluation datasets and metrics are becoming standardized, training practices remain fragmented—often relying on unreleased corpora and narrow artifact cues that hinder reproducibility and cross-domain transfer. This dissertation addresses these gaps through integrated frameworks combining model design, data standardization, synthetic data generation, validation, and generalization across manipulation types and applications. An affinity-guided visual state-space model reformulates image manipulation localization as a three-class task—pristine, source, and target—unifying copy–move and splicing detection. It captures long-range duplication efficiently while distinguishing genuine self-similarity from tampered correspondences, with domain-specific and prompt-conditioned mechanisms enabling robust localization across biomedical figures and text-driven edits. Beyond classical forgeries, this work explores the detection of AI-generated local generative forgeries by introducing a mutual information–based artifact derived from image–text conditioning signals, wherein traditional noise, compression, and frequency cues are largely diminished. On the data side, standardized benchmarks are established across splicing, copy–move, removal, inpainting, and enhancement, with protocolized splits and consistent post-processing to ensure reproducible evaluation under identical settings in both natural and biomedical domains. A vision–language–guided diffusion pipeline synthesizes semantically controlled forgeries with an automatic verification loop that maintains fidelity and annotation quality. Together, these contributions unify architectural, training, and evaluation practices under a provenance-aware paradigm that bridges handcrafted and generative-era artifacts. The research establishes a reproducible, semantically grounded, and domain-transferable foundation for image manipulation localization, providing both standardized resources and methodological advances to support fair, transparent, and interpretable progress in the field. 
653 |a Computer science 
653 |a Engineering 
653 |a Artificial intelligence 
653 |a Information technology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280355433/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280355433/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch