Load-bearing mechanism and engineering application of a heavy-duty transfer steel platform supported by basement columns

Enregistré dans:
Détails bibliographiques
Publié dans:PLoS One vol. 20, no. 12 (Dec 2025), p. e0336277
Auteur principal: Shang, Meijun
Autres auteurs: Li, Xuemei
Publié:
Public Library of Science
Sujets:
Accès en ligne:Citation/Abstract
Full Text
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3280591451
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0336277  |2 doi 
035 |a 3280591451 
045 2 |b d20251201  |b d20251231 
084 |a 174835  |2 nlm 
100 1 |a Shang, Meijun 
245 1 |a Load-bearing mechanism and engineering application of a heavy-duty transfer steel platform supported by basement columns 
260 |b Public Library of Science  |c Dec 2025 
513 |a Journal Article 
520 3 |a Heavy lifting operations performed on basement roof slabs often impose concentrated loads that may cause local stress concentrations, cracking, or even structural failure. To address this issue, this study proposes a heavy-load transfer steel platform supported by basement columns, which effectively isolates the lifting load from the roof slab to ensure structural safety. The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. The method was validated through field measurements from the Phase I project of the Hangzhou Convention and Exhibition Center, where strain gauges and displacement sensors were installed at critical positions for real-time monitoring. The measured data showed good agreement with the FEA predictions, with deviations of 5.2% for steel beam stress and 3.7% for foundation box deflection. After optimization, the material usage of the foundation boxes, secondary beams, and primary beams was reduced by 44.68%, 58.33%, and 55.00%, respectively, resulting in an overall material cost reduction of 52.67%. The results demonstrate that the proposed platform effectively mitigates stress concentration and prevents cracking of basement roof slabs under large-tonnage hoisting conditions. The structure exhibits high safety, efficiency, and reusability. Furthermore, the use of recyclable steel materials aligns with green construction and sustainability principles. Future research should explore the platform’s applicability under irregular column layouts and dynamic loading conditions. 
653 |a Green development 
653 |a Load 
653 |a Finite element method 
653 |a Particle swarm optimization 
653 |a Construction accidents & safety 
653 |a Structural engineering 
653 |a Gauges 
653 |a Basements 
653 |a Investigations 
653 |a Structural safety 
653 |a Stress concentration 
653 |a Columns (structural) 
653 |a Steel beams 
653 |a Boxes 
653 |a Lifting operations 
653 |a Load bearing elements 
653 |a Platforms 
653 |a Load transfer 
653 |a Crack propagation 
653 |a Structural failure 
653 |a Design optimization 
653 |a Mechanical loading 
653 |a Concentrated loads 
653 |a Dynamic loads 
653 |a Concrete slabs 
653 |a Metal fatigue 
653 |a Steel 
653 |a Concrete floors 
653 |a Methods 
653 |a Finite element analysis 
653 |a Strain gauges 
653 |a Reinforced concrete 
653 |a Real time 
653 |a Bridges 
653 |a Bearing capacity 
653 |a Concrete pavements 
653 |a Green buildings 
653 |a Economic 
700 1 |a Li, Xuemei 
773 0 |t PLoS One  |g vol. 20, no. 12 (Dec 2025), p. e0336277 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280591451/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3280591451/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280591451/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch