Structural Health Monitoring Using Image Processing and Advanced Technologies for the Identification of Deterioration of Building Structure: A Review

Guardado en:
Detalles Bibliográficos
Publicado en:Structural Durability & Health Monitoring vol. 19, no. 6 (2025), p. 1547-1563
Autor principal: Bodke, Kavita
Otros Autores: Bhirud, Sunil, Keshav Kashinath Sangle
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280656822
003 UK-CbPIL
022 |a 1930-2983 
022 |a 1930-2991 
024 7 |a 10.32604/sdhm.2025.069239  |2 doi 
035 |a 3280656822 
045 2 |b d20250101  |b d20251231 
100 1 |a Bodke, Kavita  |u Department of Computer Engineering, Veermata Jijabai Technological Institute, Mumbai, 400019, India 
245 1 |a Structural Health Monitoring Using Image Processing and Advanced Technologies for the Identification of Deterioration of Building Structure: A Review 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Structural Health Monitoring (SHM) systems play a key role in managing buildings and infrastructure by delivering vital insights into their strength and structural integrity. There is a need for more efficient techniques to detect defects, as traditional methods are often prone to human error, and this issue is also addressed through image processing (IP). In addition to IP, automated, accurate, and real- time detection of structural defects, such as cracks, corrosion, and material degradation that conventional inspection techniques may miss, is made possible by Artificial Intelligence (AI) technologies like Machine Learning (ML) and Deep Learning (DL). This review examines the integration of computer vision and AI techniques in Structural Health Monitoring (SHM), investigating their effectiveness in detecting various forms of structural deterioration. Also, it evaluates ML and DL models in SHM for their accuracy in identifying and assessing structural damage, ultimately enhancing safety, durability, and maintenance practices in the field. Key findings reveal that AI-powered approaches, especially those utilizing IP and DL models like CNNs, significantly improve detection efficiency and accuracy, with reported accuracies in various SHM tasks. However, significant research gaps remain, including challenges with the consistency, quality, and environmental resilience of image data, a notable lack of standardized models and datasets for training across diverse structures, and concerns regarding computational costs, model interpretability, and seamless integration with existing systems. Future work should focus on developing more robust models through data augmentation, transfer learning, and hybrid approaches, standardizing protocols, and fostering interdisciplinary collaboration to overcome these limitations and achieve more reliable, scalable, and affordable SHM systems. 
653 |a Structural health monitoring 
653 |a Accuracy 
653 |a Data augmentation 
653 |a Artificial intelligence 
653 |a Structural integrity 
653 |a Damage assessment 
653 |a Computer vision 
653 |a Image quality 
653 |a Deep learning 
653 |a Machine learning 
653 |a Structural damage 
653 |a Image processing 
653 |a Defects 
653 |a Datasets 
653 |a Collaboration 
653 |a Buildings 
653 |a Interdisciplinary aspects 
653 |a Automation 
653 |a Research & development--R&D 
653 |a Efficiency 
653 |a Preventive maintenance 
653 |a Corrosion 
653 |a Infrastructure 
653 |a Computer engineering 
653 |a Algorithms 
653 |a Human error 
700 1 |a Bhirud, Sunil  |u Department of Computer Engineering, Veermata Jijabai Technological Institute, Mumbai, 400019, India 
700 1 |a Keshav Kashinath Sangle  |u Department of Structural Engineering, Veermata Jijabai Technological Institute, Mumbai, 400019, India 
773 0 |t Structural Durability & Health Monitoring  |g vol. 19, no. 6 (2025), p. 1547-1563 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280656822/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280656822/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch