A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Computer Modeling in Engineering & Sciences vol. 145, no. 2 (2025), p. 1575-1665
Үндсэн зохиолч: Kinzah Noor
Бусад зохиолчид: Agbotiname, Lucky Imoize, Adelabu, Michael Adedosu, Cheng-Chi, Lee
Хэвлэсэн:
Tech Science Press
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3280657542
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.073200  |2 doi 
035 |a 3280657542 
045 2 |b d20250101  |b d20251231 
100 1 |a Kinzah Noor  |u Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan 
245 1 |a A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern MA schemes, from Orthogonal Multiple Access (OMA)-based approaches like Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) to advanced Non-Orthogonal Multiple Access (NOMA) methods, including power domain-NOMA, Sparse Code Multiple Access (SCMA), and Rate Splitting Multiple Access (RSMA). The study further categorizes AI techniques—such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), Federated Learning (FL), and Explainable AI (XAI)—and maps them to practical challenges in Dynamic Spectrum Management (DSM), protocol optimization, and real-time distributed decision-making. Optimization strategies, including metaheuristics and multi-agent learning frameworks, are reviewed to illustrate the potential of AI in enhancing energy efficiency, system responsiveness, and cross-layer RA. Additionally, the review addresses security, privacy, and trust concerns, highlighting solutions like privacy-preserving ML, FL, and XAI in 6G and beyond. By identifying research gaps, challenges, and future directions, this work offers a structured resource for researchers and practitioners aiming to integrate AI into 6G MA systems for intelligent, scalable, and secure wireless communications. 
653 |a Wireless networks 
653 |a Frequency division multiple access 
653 |a Wireless communications 
653 |a Artificial intelligence 
653 |a 6G mobile communication 
653 |a 5G mobile communication 
653 |a Privacy 
653 |a Optimization 
653 |a Resource allocation 
653 |a Network latency 
653 |a Energy efficiency 
653 |a Time Division Multiple Access 
653 |a Multiagent systems 
653 |a Deep learning 
653 |a Machine learning 
653 |a Real time 
653 |a Federated learning 
653 |a Explainable artificial intelligence 
653 |a Heuristic methods 
653 |a Nonorthogonal multiple access 
700 1 |a Agbotiname, Lucky Imoize  |u Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos, 100213, Nigeria 
700 1 |a Adelabu, Michael Adedosu  |u Electrical and Electronic Engineering Department, School of Science and Technology, Pan-Atlantic University, Ibeju-Lekki, Lagos, 105101, Nigeria 
700 1 |a Cheng-Chi, Lee  |u Department of Library and Information Science, Fu Jen Catholic University, New Taipei City, 242062, Taiwan, Department of Computer Science and Information Engineering, Asia University, Taichung City, 413305, Taiwan 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 145, no. 2 (2025), p. 1575-1665 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280657542/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280657542/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch