Brain-inspired signal processing for detecting stress during mental arithmetic tasks

Guardat en:
Dades bibliogràfiques
Publicat a:Brain Informatics vol. 12, no. 1 (Dec 2025), p. 34
Autor principal: Belwafi, Kais
Altres autors: Alsuwaidi, Ahmed, Mejri, Sami, Djemal, Ridha
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3280693378
003 UK-CbPIL
022 |a 2198-4018 
022 |a 2198-4026 
024 7 |a 10.1186/s40708-025-00281-y  |2 doi 
035 |a 3280693378 
045 2 |b d20251201  |b d20251231 
100 1 |a Belwafi, Kais  |u University of Sharjah, Department of Computer Engineering, College of Computing and informatics, Sharjah, United Arab Emirates (GRID:grid.412789.1) (ISNI:0000 0004 4686 5317) 
245 1 |a Brain-inspired signal processing for detecting stress during mental arithmetic tasks 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Brain-Computer Interfaces provide promising alternatives for detecting stress and enhancing emotional resilience. This study introduces a lightweight, subject-independent method for detecting stress during arithmetic tasks, designed for low computational cost and real-time use. Stress detection is performed through ElectroEncephaloGraphy (EEG) signal analysis using a simplified processing pipeline. The method begins with preprocessing the EEG recordings to eliminate artifacts and focus on relevant frequency bands (, , and ). Features are extracted by calculating band power and its deviation from a baseline. A statistical thresholding mechanism classifies stress and no-stress epochs without the need for subject-specific calibration. The approach was validated on a publicly available dataset of 36 subjects and achieved an average accuracy of 88.89%. The method effectively identifies stress-related brainwave patterns while maintaining efficiency, making it suitable for embedded and wearable devices. Unlike many existing systems, it does not require subject-specific training, enhancing its applicability in real-world environments. 
653 |a Physiology 
653 |a Machine learning 
653 |a Accuracy 
653 |a Signal analysis 
653 |a Deep learning 
653 |a Signal processing 
653 |a Human-computer interface 
653 |a Arithmetic 
653 |a Brain research 
653 |a Sensors 
653 |a Classification 
653 |a Wearable technology 
653 |a Frequencies 
653 |a Neurosciences 
653 |a Electroencephalography 
653 |a Cognitive load 
653 |a Algorithms 
653 |a Mental health 
653 |a Real time 
653 |a Post traumatic stress disorder 
653 |a Heart rate 
700 1 |a Alsuwaidi, Ahmed  |u University of Sharjah, Department of Computer Engineering, College of Computing and informatics, Sharjah, United Arab Emirates (GRID:grid.412789.1) (ISNI:0000 0004 4686 5317) 
700 1 |a Mejri, Sami  |u Khalifa University of Science and Technology, Pedagogical Enhancement - CTL, Abu Dhabi, United Arab Emirates (GRID:grid.440568.b) (ISNI:0000 0004 1762 9729) 
700 1 |a Djemal, Ridha  |u National School of Engineering, University of Sfax, Department of Electrical Engineering, ATMS Lab, Sfax, Tunisia (GRID:grid.412124.0) (ISNI:0000 0001 2323 5644) 
773 0 |t Brain Informatics  |g vol. 12, no. 1 (Dec 2025), p. 34 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280693378/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3280693378/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280693378/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch