Neural networks for epilepsy detection and prediction with EEG signals: a systematic review

Guardat en:
Dades bibliogràfiques
Publicat a:The Artificial Intelligence Review vol. 59, no. 1 (Jan 2026), p. 30
Autor principal: Wu, Youpeng
Altres autors: Lu, Lun, Xu, Ao, Wang, Yinan, Li, Zhiwei, Yang, Zhuanyi, Zeng, Lingli, Li, Qingjiang
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3280890416
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11441-1  |2 doi 
035 |a 3280890416 
045 2 |b d20260101  |b d20260131 
084 |a 68693  |2 nlm 
100 1 |a Wu, Youpeng  |u National University of Defense Technology, College of Electronic Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
245 1 |a Neural networks for epilepsy detection and prediction with EEG signals: a systematic review 
260 |b Springer Nature B.V.  |c Jan 2026 
513 |a Journal Article 
520 3 |a Epilepsy is a neurological disorder characterized by abnormal neuronal discharges in the brain. As a rich source of biometric information, electroencephalography (EEG) provides favorable conditions for automated detection. Traditional algorithms and manual analysis possess solid theoretical foundations and good interpretability, however, these methods predominantly require extensive domain expertise and involve lengthy processing pipelines for complex data. The advent of artificial intelligence (AI) has facilitated the application of neural networks in the detection and prediction of epilepsy. Although such approaches heavily rely on high-quality annotated data, suffer from limited model interpretability, and involve complex training and parameter tuning, these efficient, real-time, end-to-end models still demonstrate significant potential in epilepsy analysis. This review systematically analyzes and summarizes the neural network technologies used in 341 papers published in the past three years, employing the PRISMA standard procedure. To facilitate readers’ related research, the review also summarizes the basic information of 16 publicly available datasets, common features, and metrics. Specifically, this review offers a comprehensive evaluation of diverse neural network architectures, concluding that convolutional neural networks have become a prevalent choice as classic neural networks. Furthermore, graph neural networks and transformers are experiencing a marked surge in popularity. The application of hybrid neural networks to fully extract information from EEG is also a growing trend. The review concludes with a comprehensive discussion and summary of the technical characteristics, research directions, and limitations of current methods, including patient-to-patient identification, explainable AI, dataset bias, and zone location. 
653 |a Epilepsy 
653 |a Data processing 
653 |a Accuracy 
653 |a Neurological diseases 
653 |a Datasets 
653 |a Convulsions & seizures 
653 |a Brain 
653 |a Neurological disorders 
653 |a Brain research 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Electroencephalography 
653 |a Data quality 
653 |a Explainable artificial intelligence 
653 |a Internet of Things 
653 |a Popularity 
653 |a Networks 
653 |a Artificial intelligence 
653 |a Systematic review 
653 |a Graph neural networks 
653 |a Pipelines 
653 |a Support vector machines 
653 |a Classification 
653 |a Information 
653 |a Algorithms 
653 |a Patients 
653 |a Real time 
653 |a Biometrics 
653 |a Comparative analysis 
700 1 |a Lu, Lun  |u National University of Defense Technology, College of Electronic Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
700 1 |a Xu, Ao  |u National University of Defense Technology, College of Electronic Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
700 1 |a Wang, Yinan  |u National University of Defense Technology, College of Electronic Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
700 1 |a Li, Zhiwei  |u National University of Defense Technology, College of Electronic Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
700 1 |a Yang, Zhuanyi  |u Central South University, Department of Neurosurgery, Xiangya Hospital, Changsha, China (GRID:grid.216417.7) (ISNI:0000 0001 0379 7164) 
700 1 |a Zeng, Lingli  |u National University of Defense Technology, College of Intelligence Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
700 1 |a Li, Qingjiang  |u National University of Defense Technology, College of Electronic Science and Technology, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
773 0 |t The Artificial Intelligence Review  |g vol. 59, no. 1 (Jan 2026), p. 30 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280890416/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3280890416/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280890416/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch