Mechanical Characteristics Based on the Microstructure Analysis of Cementitious Composites Incorporating Polypropylene Powder

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 23 (2025), p. 4257-4280
Autor principal: Mun Jeonguk
Otros Autores: Kim, Dongwook, Kang Sunho, Lee, Heeyoung
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Incorporating recycled plastics into construction materials offers environmental and economic benefits. This study examined the properties of cementitious composites incorporating recycled polypropylene (PP) powder to evaluate the feasibility of plastics as construction materials. Experimental parameters included PP content and a curing method. Ninety-six specimens were fabricated for compressive strength tests and 48 for flexural strength tests, with six specimens per parameter. The mechanical behavior of the PP cementitious composites was assessed through compressive and flexural strength tests alongside digital image correlation analysis. Field emission scanning electron microscopy (FE-SEM) and mercury intrusion porosimetry (MIP) were used to analyze the pore structure of cementitious composites. Additionally, X-ray diffraction and thermogravimetric analysis examined the thermal and chemical characteristics. Compared with the control specimens, cementitious composites containing 30% PP exhibited approximately 30% reduction in compressive strength but a 28% increase in flexural strength. FE-SEM and MIP results revealed defects that deteriorated the performance of the cementitious composites. However, the compressive strengths exceeded 30 MPa across all the tested parameters, which is satisfactory for construction applications. Furthermore, the addition of PP enhanced flexural strength, providing structural benefits that render it a viable option for sustainable construction materials.
ISSN:2075-5309
DOI:10.3390/buildings15234257
Fuente:Engineering Database