Communication System with Walsh Transform-Based End-to-End Autoencoder

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 23 (2025), p. 4738-4759
Autor principal: Knyva Mindaugas
Otros Autores: Ruseckas Julius, Alfonsas, Juršėnas
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280947536
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14234738  |2 doi 
035 |a 3280947536 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Knyva Mindaugas 
245 1 |a Communication System with Walsh Transform-Based End-to-End Autoencoder 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper investigates the design of end-to-end (E2E) autoencoders within AI-enhanced communication systems. It emphasizes the advantages of transitioning from Fast Fourier Transform (FFT)-based Orthogonal Frequency Division Multiplexing (OFDM) to a modulation technique based on the Walsh–Hadamard transform (WHT). This study underscores the WHT’s use of aperiodic basis functions, in contrast with the periodic bases of Fourier transforms. The proposed E2E autoencoder model integrates neural networks in both the transmitter and receiver for signal processing. The model is trained to adapt the bit rate according to the measured channel signal-to-noise ratio (SNR) using the same neural network, enabling operation at low SNR levels (down to −10 dB). Additionally, the model was experimentally validated in a laboratory setting using a software-defined radio (SDR)-based system setup. 
653 |a Wireless communications 
653 |a Receivers & amplifiers 
653 |a Machine learning 
653 |a Simulation 
653 |a Deep learning 
653 |a Signal processing 
653 |a Neural networks 
653 |a Fourier transforms 
653 |a Walsh transforms 
653 |a Fast Fourier transformations 
653 |a Systems design 
653 |a Adaptation 
653 |a Basis functions 
653 |a Design 
653 |a Communications systems 
653 |a Orthogonal Frequency Division Multiplexing 
653 |a Software radio 
653 |a Signal to noise ratio 
700 1 |a Ruseckas Julius 
700 1 |a Alfonsas, Juršėnas 
773 0 |t Electronics  |g vol. 14, no. 23 (2025), p. 4738-4759 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280947536/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280947536/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280947536/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch