Bayesian Prony Modal Identification and Hierarchical Control Strategy for Low-Frequency Oscillation of Ship Microgrid

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 23 (2025), p. 4669-4691
Autor principal: Ding, Yue
Otros Autores: Zhao, Ke, Duan Jiandong, Sun, Li
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280947587
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14234669  |2 doi 
035 |a 3280947587 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Ding, Yue 
245 1 |a Bayesian Prony Modal Identification and Hierarchical Control Strategy for Low-Frequency Oscillation of Ship Microgrid 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A Bayes–Prony oscillating modal identification and hierarchical control strategy for low-frequency oscillation (LFO) of a ship microgrid (SM) is presented in this paper. The modal probabilistic estimation of the proposed algorithm replaces point estimation of the traditional Prony method and improves the robustness of modal identification. The hierarchical control strategy first performs modal identification by means of the batch least squares Prony (BLS-Prony) algorithm. The modal identification results are calibrated by the explanatory variance score (EVS), and the control process is transferred to recursive least squares Prony (RLS-Prony) real-time detection. The third layer of decision making transfers to Bayesian Prony (Bayes–Prony) identification in case of a loss of modality or failure of identification. The designed Bayes–Prony algorithm identifies the oscillatory modal of signals with a signal-to-noise ratio (SNR) equal to 2 dB. Compared to BLS-Prony and RLS-Prony, Bayes–Prony reduces the SNR convergence domain of the signal by 30 dB as the last layer of hierarchical control. Therefore, the third-layer decision commands are used as a scheduling reference for damping control in SM power plants. The proposed algorithms and strategies maximize the saving of computational resources while ensuring that the modal identification is effective. Finally, the correctness of the proposed algorithm and strategy is verified by the LFO waveforms of the experimental platform. 
610 4 |a International Maritime Organization 
653 |a Modal identification 
653 |a Waveforms 
653 |a Deep learning 
653 |a Distributed generation 
653 |a Bayesian analysis 
653 |a Prony's method 
653 |a Recursive functions 
653 |a Damping 
653 |a Algorithms 
653 |a Energy storage 
653 |a Time series 
653 |a Real time 
653 |a Power plants 
653 |a Least squares 
653 |a Shipping industry 
653 |a Parameter estimation 
653 |a Signal to noise ratio 
700 1 |a Zhao, Ke 
700 1 |a Duan Jiandong 
700 1 |a Sun, Li 
773 0 |t Electronics  |g vol. 14, no. 23 (2025), p. 4669-4691 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280947587/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280947587/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280947587/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch