Identifying Illicit Activities in Blockchain Transaction Graph Networks

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 23 (2025), p. 4599-4625
Autor principal: Adam, Tomáš
Otros Autores: Babič František
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280947594
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14234599  |2 doi 
035 |a 3280947594 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Adam, Tomáš 
245 1 |a Identifying Illicit Activities in Blockchain Transaction Graph Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, blockchain technology has gained widespread attention for its immutable and distributed ledger mechanism that ensures security and transparency among all participants. However, the decentralized nature of the blockchain network consequently presents its unique challenges in detecting fraudulent activities that may be executed by malicious actors. The traditional detection methods, such as rule-based systems, may not be sufficient to capture the complex and evolving nature of these activities. This paper explores the application of machine learning and transaction graph representation to detect suspicious accounts on the World Asset Exchange (WAX) blockchain. By leveraging dynamic subgraph embedding generation and contrastive representation learning, the proposed approach primarily targets the identification of suspicious transaction behaviors indicative of fraudulent activity. The contrastive representation learning approach enhances the generation of subgraph embeddings through a contrastive loss function to effectively discriminate between potentially fraudulent and legitimate transaction behavior by optimizing the distances in the embedding space. This process significantly enhances the classification accuracy, particularly for the imbalanced minority class often seen in fraud detection scenarios. The results of the experimental validations indicate the presence of potentially fraudulent activities and highlight the effectiveness of the anomaly ranking mechanism in identifying new, previously unseen cases. 
653 |a Machine learning 
653 |a Non-fungible tokens 
653 |a Distributed ledger 
653 |a Graph theory 
653 |a Fraud prevention 
653 |a Blockchain 
653 |a Digital currencies 
653 |a Money laundering 
653 |a Financial systems 
653 |a Algorithms 
653 |a Cybercrime 
653 |a Graphical representations 
653 |a Smart contracts 
653 |a Embedding 
653 |a Asset management 
653 |a Financial institutions 
700 1 |a Babič František 
773 0 |t Electronics  |g vol. 14, no. 23 (2025), p. 4599-4625 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280947594/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280947594/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280947594/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch