Distributed Semi-Supervised Multi-Dimensional Uncertain Data Classification over Networks

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 23 (2025), p. 4634-4660
Autor principal: Xu, Zhen
Otros Autores: Chen, Sicong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280947599
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14234634  |2 doi 
035 |a 3280947599 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Xu, Zhen  |u College of Computer Science and Artificial Intelligence Engineering, Wenzhou University, Wenzhou 325006, China 
245 1 |a Distributed Semi-Supervised Multi-Dimensional Uncertain Data Classification over Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Distributed multi-dimensional classification, where multiple nodes over a network induce a multi-dimensional classifier based on their own local data and a little information exchanged from neighbors, has received extensive attention in the academic community recently. Nevertheless, we observe that the classical distributed multi-dimensional classification formulation requires all training data to have definite feature attributes and complete labels. However, in real-world scenarios, due to measurement errors in distributed networks, the collected data samples consist of attributes with uncertainty. Additionally, a substantial proportion of multi-dimensional data faces challenges in label acquisition. Therefore, the key to achieving satisfactory performance in such a case is designing an effective method to model the input uncertainty and exploit weakly supervised information from the training data. Considering this, in this paper, we design a novel misclassification loss function that extracts effective information from uncertain data by treating it as the integral of misclassification loss over the potential data distribution. Additionally, we propose a new explicit feature mapping for constructing a nonlinear discriminant function. Based on this, we further put forward a novel manifold regularization term to recover multi-dimensional labels and simplify the original objective function to enable it to be optimized. By leveraging the gradient descent method, we optimize the simplified decentralized cost function and obtain the global optimal solution. We evaluate the performance of the proposed distributed semi-supervised multi-dimensional uncertain data classification algorithm, namely the dSMUDC algorithm, on several real datasets. The results of our experiments indicate that, in terms of all metrics, our proposed algorithm outperforms existing approaches to a significant extent. 
653 |a Regularization 
653 |a Labels 
653 |a Performance evaluation 
653 |a Classification 
653 |a Cost function 
653 |a Normal distribution 
653 |a Optimization 
653 |a Decomposition 
653 |a Multidimensional data 
653 |a Algorithms 
653 |a Methods 
653 |a Discriminant analysis 
653 |a Uncertainty 
653 |a Data compression 
653 |a Data collection 
653 |a Internet of Things 
700 1 |a Chen, Sicong  |u Kasco Signal Co., Ltd., Shanghai 200072, China 
773 0 |t Electronics  |g vol. 14, no. 23 (2025), p. 4634-4660 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280947599/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280947599/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280947599/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch