Regularized Maximum Likelihood Estimation for the Random Coefficients Model in Python
Na minha lista:
| Publicado no: | Mathematics vol. 13, no. 23 (2025), p. 3764-3793 |
|---|---|
| Autor principal: | |
| Outros Autores: | , |
| Publicado em: |
MDPI AG
|
| Assuntos: | |
| Acesso em linha: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Sem tags, seja o primeiro a adicionar uma tag!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3280956353 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7390 | ||
| 024 | 7 | |a 10.3390/math13233764 |2 doi | |
| 035 | |a 3280956353 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231533 |2 nlm | ||
| 100 | 1 | |a Dunker Fabian | |
| 245 | 1 | |a Regularized Maximum Likelihood Estimation for the Random Coefficients Model in Python | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a We present PyRMLE (Python regularized maximum likelihood estimation), a Python module that implements regularized maximum likelihood estimation for the analysis of Random coefficient models. PyRMLE is simple to use and readily works with data formats that are typical to Random coefficient problems. The module makes use of Python’s scientific libraries NumPy and SciPy for computational efficiency. The main implementation of the algorithm is executed purely in Python code, which takes advantage of Python’s high-level features. The module has been applied successfully in numerical experiments and real data applications. We demonstrate an application of the package in consumer demand. | |
| 653 | |a Approximation | ||
| 653 | |a Maximum likelihood estimation | ||
| 653 | |a Python | ||
| 653 | |a Modules | ||
| 653 | |a Random variables | ||
| 653 | |a Algorithms | ||
| 653 | |a Maximum likelihood method | ||
| 700 | 1 | |a Mendoza, Emil | |
| 700 | 1 | |a Reale, Marco | |
| 773 | 0 | |t Mathematics |g vol. 13, no. 23 (2025), p. 3764-3793 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3280956353/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3280956353/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3280956353/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |