Regularized Maximum Likelihood Estimation for the Random Coefficients Model in Python

Na minha lista:
Detalhes bibliográficos
Publicado no:Mathematics vol. 13, no. 23 (2025), p. 3764-3793
Autor principal: Dunker Fabian
Outros Autores: Mendoza, Emil, Reale, Marco
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3280956353
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13233764  |2 doi 
035 |a 3280956353 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Dunker Fabian 
245 1 |a Regularized Maximum Likelihood Estimation for the Random Coefficients Model in Python 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a We present PyRMLE (Python regularized maximum likelihood estimation), a Python module that implements regularized maximum likelihood estimation for the analysis of Random coefficient models. PyRMLE is simple to use and readily works with data formats that are typical to Random coefficient problems. The module makes use of Python’s scientific libraries NumPy and SciPy for computational efficiency. The main implementation of the algorithm is executed purely in Python code, which takes advantage of Python’s high-level features. The module has been applied successfully in numerical experiments and real data applications. We demonstrate an application of the package in consumer demand. 
653 |a Approximation 
653 |a Maximum likelihood estimation 
653 |a Python 
653 |a Modules 
653 |a Random variables 
653 |a Algorithms 
653 |a Maximum likelihood method 
700 1 |a Mendoza, Emil 
700 1 |a Reale, Marco 
773 0 |t Mathematics  |g vol. 13, no. 23 (2025), p. 3764-3793 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280956353/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280956353/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280956353/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch