Integrated Bayesian Networks and Linear Programming for Decision Optimization

Guardat en:
Dades bibliogràfiques
Publicat a:Mathematics vol. 13, no. 23 (2025), p. 3749-3775
Autor principal: Assel, Abdildayeva
Altres autors: Shayakhmetova Assem, Nurtugan Galymzhan Baurzhanuly
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3280957085
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13233749  |2 doi 
035 |a 3280957085 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Assel, Abdildayeva 
245 1 |a Integrated Bayesian Networks and Linear Programming for Decision Optimization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper develops a general BN → LP framework for decision optimization under complex, structured uncertainty. A Bayesian network encodes causal dependencies among drivers and yields posterior joint probabilities; a linear program then reads expected coefficients directly from BN marginals to optimize the objective under operational constraints with explicit risk control via chance constraints or small ambiguity sets centered at the BN posterior. This mapping avoids explicit scenario enumeration and separates feasibility from credibility, so extreme but implausible cases are down-weighted rather than dictating decisions. A farm-planning case with interacting factors (weather → disease → yield; demand ↔ price; input costs) demonstrates practical feasibility. Under matched risk control, the BN → LP approach maintains the target violation rate while avoiding the over-conservatism of flat robust optimization and the optimism of independence-based stochastic programming; it also circumvents the inner minimax machinery typical of distributionally robust optimization. Tractability is governed by BN inference over the decision-relevant ancestor subgraph; empirical scaling shows that Markov-blanket pruning, mutual-information screening of weak parents, and structured/low-rank CPDs yield orders-of-magnitude savings with negligible impact on the objective. A standardized, data-and-expert construction (Dirichlet smoothing) and a systematic sensitivity analysis identifies high-leverage parameters, while a receding-horizon DBN → LP extension supports online updates. The method brings the largest benefits when uncertainty is high-dimensional and coupled, and it converges to classical allocations when drivers are few and essentially independent. 
653 |a Parameter identification 
653 |a Linear programming 
653 |a Random variables 
653 |a Bayesian analysis 
653 |a Epistemology 
653 |a Sensitivity analysis 
653 |a Parameter sensitivity 
653 |a Graph theory 
653 |a Optimization 
653 |a Decision making 
653 |a Allocations 
653 |a Accounting 
653 |a Data smoothing 
653 |a Probability 
653 |a Stochastic models 
653 |a Enumeration 
653 |a Algorithms 
653 |a Feasibility 
653 |a Constraints 
653 |a Uncertainty 
653 |a Robustness 
653 |a Stochastic programming 
700 1 |a Shayakhmetova Assem 
700 1 |a Nurtugan Galymzhan Baurzhanuly 
773 0 |t Mathematics  |g vol. 13, no. 23 (2025), p. 3749-3775 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280957085/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280957085/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280957085/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch