Fuzzy Aspects Associated with Biological Inheritance

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Mathematics vol. 13, no. 23 (2025), p. 3847-3866
Tác giả chính: Sonea Andromeda Pătraşcu
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3280957447
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13233847  |2 doi 
035 |a 3280957447 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Sonea Andromeda Pătraşcu 
245 1 |a Fuzzy Aspects Associated with Biological Inheritance 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Genetics explores the mechanisms of heredity and trait variation across organisms, with foundational principles established by Gregor Mendel through experiments on monohybrid and dihybrid crosses. The mathematical framework of hypergroups can effectively describe these classical genetic models. This study examines the interaction between genetic hybridization models and fuzzy set theory. It focuses on the fuzzy function that relates to phenotype classes made from simple dominance in dihybrid, trihybrid, and polyhybrid crosses. The methods use fuzzy logic to model phenotype distributions. The results show a clear link between the structure of the fuzzy function and the number of distinct phenotype classes in each hybridization case. This article presents a general form for the fuzzy function, and it always follows the same order relation. The number of phenotypes in each class determines this relation. Therefore, each class is associated with a string that serves as a row in the matrix describing the respective hybridization. Studies have shown that the eigenvalues of this matrix coincide with its elements. 
653 |a Hybridization 
653 |a Eigenvalues 
653 |a Heredity 
653 |a Fuzzy sets 
653 |a Algorithms 
653 |a Organisms 
653 |a Genotype & phenotype 
653 |a Genes 
653 |a Fuzzy logic 
653 |a Genetics 
653 |a Fuzzy set theory 
773 0 |t Mathematics  |g vol. 13, no. 23 (2025), p. 3847-3866 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280957447/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3280957447/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280957447/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch