Efficient Meshless Phase-Field Modeling of Crack Propagation by Using Adaptive Load Increments and Variable Node Densities

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 23 (2025), p. 3795-3813
Autor principal: Izaz, Ali
Otros Autores: Božidar, Šarler, Mavrič Boštjan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280957550
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13233795  |2 doi 
035 |a 3280957550 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Izaz, Ali 
245 1 |a Efficient Meshless Phase-Field Modeling of Crack Propagation by Using Adaptive Load Increments and Variable Node Densities 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study employs the fourth-order phase-field method (PFM) to investigate crack propagation. The PFM incurs significant computational costs due to its need for a highly dense node arrangement for accurate crack propagation. This study proposes an adaptive loading step size strategy combined with a scattered node (SCNvar) arrangement with variable spacings. The mechanical and phase-field models are solved using the strong-form meshless local radial basis function collocation method in a staggered approach. The method’s performance is evaluated based on accuracy and computational cost, using regular nodes (RGN) and scattered nodes (SCNuni) with uniform spacing, as well as SCNvar with variable node spacing. Two benchmark tests are used to analyze the proposed method: a symmetric double-notch tension and a single-edge notch shear test. The analysis shows that the adaptive step size strategy improves numerical stability while the SCNvar significantly reduces computational cost. Using SCNvar, the CPU time is decreased by about thirty times compared to uniform nodes in the tensile case and by approximately three times in the shear case, without sacrificing accuracy. This confirms that directing computational resources to critical regions can significantly reduce CPU time, suggesting that adaptive node redistribution could further enhance computational performance. 
653 |a Load 
653 |a Accuracy 
653 |a Propagation 
653 |a Simulation 
653 |a Partial differential equations 
653 |a Performance evaluation 
653 |a Radial basis function 
653 |a Meshless methods 
653 |a Crack propagation 
653 |a Shear tests 
653 |a Nodes 
653 |a Collocation methods 
653 |a Crack initiation 
653 |a Variables 
653 |a Computing costs 
653 |a Approximation 
653 |a Methods 
653 |a Numerical stability 
653 |a Boundary conditions 
700 1 |a Božidar, Šarler 
700 1 |a Mavrič Boštjan 
773 0 |t Mathematics  |g vol. 13, no. 23 (2025), p. 3795-3813 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280957550/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280957550/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280957550/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch