Hybrid Partial-Data-Driven H∞ Robust Tracking Control for Linear Stochastic Systems with Discrete-Time Observation of Reference Trajectory

Na minha lista:
Detalhes bibliográficos
Publicado no:Mathematics vol. 13, no. 23 (2025), p. 3854-3876
Autor principal: Zhang Yiteng
Outros Autores: Lin, Xiangyun, Zhang, Rui
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3280957559
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13233854  |2 doi 
035 |a 3280957559 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhang Yiteng  |u College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China; zyt951541241@163.com (Y.Z.); lxy9393@sina.com (X.L.) 
245 1 |a Hybrid Partial-Data-Driven <i>H</i><sub>∞</sub> Robust Tracking Control for Linear Stochastic Systems with Discrete-Time Observation of Reference Trajectory 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A hybrid robust <inline-formula>H∞</inline-formula> tracking-control design method is studied for linear stochastic systems in which the parameters of the reference system are unknown but inferred from discrete-time observations. First, the reference system parameters are estimated by the least-squares method, and a corresponding data-dependent augmented system is constructed. Second, a Riccati matrix inequality is established for these systems, and a state-feedback <inline-formula>H∞</inline-formula> controller is designed to improve tracking performance. Third, to mitigate large tracking errors, an error-feedback control scheme is introduced to compensate for dynamic tracking deviations. These results yield a hybrid control framework that integrates data observation, state-feedback <inline-formula>H∞</inline-formula> control, and error-feedback <inline-formula>H∞</inline-formula> control to address the tracking problem more effectively. Two numerical examples and one practical example demonstrate the effectiveness of the proposed method. 
653 |a Autonomous underwater vehicles 
653 |a Robust control 
653 |a Random variables 
653 |a Parameter estimation 
653 |a Brownian motion 
653 |a Tracking control 
653 |a Reference systems 
653 |a Controllers 
653 |a Least squares method 
653 |a Design 
653 |a Unmanned aerial vehicles 
653 |a Discrete time systems 
653 |a Control systems 
653 |a State feedback 
653 |a Hybrid control 
653 |a Tracking errors 
653 |a Tracking problem 
653 |a Feedback control 
653 |a H-infinity control 
653 |a Stochastic systems 
700 1 |a Lin, Xiangyun  |u College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China; zyt951541241@163.com (Y.Z.); lxy9393@sina.com (X.L.) 
700 1 |a Zhang, Rui  |u College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China 
773 0 |t Mathematics  |g vol. 13, no. 23 (2025), p. 3854-3876 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280957559/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280957559/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280957559/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch