Optimization of Spatial Sampling in Satellite–UAV Integrated Remote Sensing: Rationale and Applications in Crop Monitoring

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 23 (2025), p. 3895-3914
Autor principal: Zhao, Zhen
Otros Autores: Xiong Hang, Yu, Yawen, Xu Baodong, Zhang, Jian
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280962396
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17233895  |2 doi 
035 |a 3280962396 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhao, Zhen  |u Digital Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070, China 
245 1 |a Optimization of Spatial Sampling in Satellite–UAV Integrated Remote Sensing: Rationale and Applications in Crop Monitoring 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>Layout configuration of satellite–UAV integrated remote sensing was transformed into a spatial sampling problem. <list-item> An SSO (spatial sampling optimization) model was proposed. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>Sampling efficiency requires considering both cost and accuracy. <list-item> The SSO-optimized plan improved efficiency by at least 38.7% over conventional plans. </list-item> Satellite and UAV-based remote sensing have been widely used for agricultural systems monitoring jointly. How to quantitatively optimize the efficiency of integrating these two techniques remains largely understudied. To address this gap, we, for the first time, formulate the configuration of satellite–UAV integrated system as a spatial sampling optimization problem and propose an SSO (spatial sampling optimization) model that jointly optimizes the spatial locations and flight paths of UAV sampling within the satellite monitoring area. The SSO model enables maximizing the accuracy of monitoring under a given cost constraint. We obtained comprehensive data in rapeseed fields and conducted experiments based on the SSO model. We compared the sampling effectiveness of the SSO model with that of simple random sampling, systematic sampling, equal stratified sampling and Neyman stratified sampling. The results showed that the SSO-optimized plan had the highest sampling efficiency, which was at least 38.7% higher than that of the best-performing conventional method (Neyman stratified sampling). Under the same cost constraint, the SSO-optimized sampling scheme can have 11.1% more sampling points than the conventional sampling scheme. The Elite Genetic Algorithm (EGA) performed well in solving the SSO model. The error of the SSO-optimized scheme was reduced by 27.3% and the sampling distance was reduced by 7000 to 8000 m on average. In conclusion, the proposed SSO model helps to optimize the configuration of satellite–UAV integrated remote sensing, thereby improving the cost-effectiveness of agricultural monitoring systems. We call for considering cost constraints and increasing efficiency in agricultural system monitoring and government censuses in the future. 
653 |a Accuracy 
653 |a Rapeseed 
653 |a Optimization 
653 |a Efficiency 
653 |a Remote sensing 
653 |a Unmanned aerial vehicles 
653 |a Sampling error 
653 |a Monitoring 
653 |a Random sampling 
653 |a Cost effectiveness 
653 |a Configurations 
653 |a Farming systems 
653 |a Genetic algorithms 
653 |a Statistical sampling 
653 |a Design 
653 |a Remote sensing systems 
653 |a Satellites 
653 |a Algorithms 
653 |a Constraints 
653 |a Traveling salesman problem 
653 |a Parameter estimation 
700 1 |a Xiong Hang  |u Digital Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070, China 
700 1 |a Yu, Yawen  |u Digital Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070, China 
700 1 |a Xu Baodong  |u Digital Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070, China 
700 1 |a Zhang, Jian  |u Digital Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070, China 
773 0 |t Remote Sensing  |g vol. 17, no. 23 (2025), p. 3895-3914 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280962396/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280962396/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280962396/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch