Boosting SAR ATR Trustworthiness via ERFA: An Electromagnetic Reconstruction Feature Alignment Method

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Remote Sensing vol. 17, no. 23 (2025), p. 3855-3882
Egile nagusia: Gao Yuze
Beste egile batzuk: Li Dongying, Guo Weiwei, Lin, Jianyu, Wang, Yiren, Yu, Wenxian
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3280962905
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17233855  |2 doi 
035 |a 3280962905 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Gao Yuze  |u Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiaotong University, Shanghai 200240, China; gaoyuze@sjtu.edu.cn (Y.G.); jianyu.l.wl@sjtu.edu.cn (J.L.); wyiren2020@sjtu.edu.cn (Y.W.); wxyu@sjtu.edu.cn (W.Y.) 
245 1 |a Boosting SAR ATR Trustworthiness via ERFA: An Electromagnetic Reconstruction Feature Alignment Method 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>The integration of the frequency-domain electromagnetic reconstruction algorithm with image-domain cropping optimization achieves an effective balance between reconstruction accuracy and computational efficiency. <list-item> The integration of electromagnetic reconstruction and feature alignment effectively enhances model robustness and suppresses background clutter in SAR ATR under varying operating conditions. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>Provides a trustworthy deep learning solution for SAR ATR by aligning electromagnetic reconstructions with image features, which helps mitigate overfitting to specific operating conditions. <list-item> Provides evidence that utilizing target-related physical features significantly enhances the robustness, generalization and interpretability of deep learning-based SAR ATR. </list-item> Deep learning-based synthetic aperture radar (SAR) automatic target recognition (ATR) methods exhibit a tendency to overfit specific operating conditions—such as radar parameters and background clutter—which frequently leads to high sensitivity against variations in these conditions. A novel electromagnetic reconstruction feature alignment (ERFA) method is proposed in this paper, which integrates electromagnetic reconstruction with feature alignment into a fully convolutional network, forming the ERFA-FVGGNet. The ERFA-FVGGNet comprises three modules: electromagnetic reconstruction using our proposed orthogonal matching pursuit with image-domain cropping-optimization (OMP-IC) algorithm for efficient, high-precision attributed scattering center (ASC) reconstruction and extraction; the designed FVGGNet combining transfer learning with a lightweight fully convolutional network to enhance feature extraction and generalization; and feature alignment employing a dual-loss to suppress background clutter while improving robustness and interpretability. Experimental results demonstrate that ERFA-FVGGNet boosts trustworthiness by enhancing robustness, generalization and interpretability. 
653 |a Feature extraction 
653 |a Dictionaries 
653 |a Deep learning 
653 |a Algorithms 
653 |a Automatic target recognition 
653 |a Parameter sensitivity 
653 |a Image processing 
653 |a Matched pursuit 
653 |a Machine learning 
653 |a Data compression 
653 |a Transfer learning 
653 |a Alignment 
653 |a Physics 
653 |a Image reconstruction 
653 |a Fourier transforms 
653 |a Synthetic aperture radar 
653 |a Target recognition 
653 |a Neural networks 
653 |a Optimization 
653 |a Crops 
653 |a Clutter 
653 |a Robustness (mathematics) 
653 |a Trustworthiness 
700 1 |a Li Dongying  |u Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiaotong University, Shanghai 200240, China; gaoyuze@sjtu.edu.cn (Y.G.); jianyu.l.wl@sjtu.edu.cn (J.L.); wyiren2020@sjtu.edu.cn (Y.W.); wxyu@sjtu.edu.cn (W.Y.) 
700 1 |a Guo Weiwei  |u Center for Digital Innovation, Tongji University, Shanghai 200092, China; weiweiguo@tongji.edu.cn 
700 1 |a Lin, Jianyu  |u Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiaotong University, Shanghai 200240, China; gaoyuze@sjtu.edu.cn (Y.G.); jianyu.l.wl@sjtu.edu.cn (J.L.); wyiren2020@sjtu.edu.cn (Y.W.); wxyu@sjtu.edu.cn (W.Y.) 
700 1 |a Wang, Yiren  |u Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiaotong University, Shanghai 200240, China; gaoyuze@sjtu.edu.cn (Y.G.); jianyu.l.wl@sjtu.edu.cn (J.L.); wyiren2020@sjtu.edu.cn (Y.W.); wxyu@sjtu.edu.cn (W.Y.) 
700 1 |a Yu, Wenxian  |u Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiaotong University, Shanghai 200240, China; gaoyuze@sjtu.edu.cn (Y.G.); jianyu.l.wl@sjtu.edu.cn (J.L.); wyiren2020@sjtu.edu.cn (Y.W.); wxyu@sjtu.edu.cn (W.Y.) 
773 0 |t Remote Sensing  |g vol. 17, no. 23 (2025), p. 3855-3882 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280962905/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280962905/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280962905/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch