Low-Cost Real-Time Remote Sensing and Geolocation of Moving Targets via Monocular Bearing-Only Micro UAVs

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 23 (2025), p. 3836-3857
Autor principal: Sun, Peng
Otros Autores: Tong Shiji, Qin Kaiyu, Luo Zhenbing, Lin Boxian, Shi Mengji
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280962921
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17233836  |2 doi 
035 |a 3280962921 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Sun, Peng  |u School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China; pengsun@std.uestc.edu.cn (P.S.); shijitong@std.uestc.edu.cn (S.T.); linbx@uestc.edu.cn (B.L.); maangat@uestc.edu.cn (M.S.) 
245 1 |a Low-Cost Real-Time Remote Sensing and Geolocation of Moving Targets via Monocular Bearing-Only Micro UAVs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>A bearing-only localization framework is proposed for micro UAVs operating over uneven terrain, combining a pseudo-linear Kalman filter (PLKF) with a sliding-window nonlinear least squares optimization to achieve real-time 3D positioning and motion prediction. <list-item> An observability-enhanced flight trajectory planning method is designed based on the Fisher Information Matrix (FIM), which improves localization accuracy in flight experiments, with an average gain of up to 4.34 m. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>The method addresses the limitations of monocular cameras with scale ambiguity and lack of depth measurement, providing a practical solution for low-cost UAVs in remote sensing and moving target localization. <list-item> The results suggest potential applications in emergency response, target monitoring, and traffic security, demonstrating the feasibility of high-accuracy localization on resource-constrained UAV platforms. </list-item> Low-cost and real-time remote sensing of moving targets is increasingly required in civilian applications. Micro unmanned aerial vehicles (UAVs) provide a promising platform for such missions because of their small size and flexible deployment, but they are constrained by payload capacity and energy budget. Consequently, they typically carry lightweight monocular cameras only. These cameras cannot directly measure distance and suffer from scale ambiguity, which makes accurate geolocation difficult. This paper tackles geolocation and short-term trajectory prediction of moving targets over uneven terrain using bearing-only measurements from a monocular camera. We present a two-stage estimation framework in which a pseudo-linear Kalman filter (PLKF) provides real-time state estimates, while a sliding-window nonlinear least-squares (NLS) back end refines them. Future target positions are obtained by extrapolating the estimated trajectory. To improve localization accuracy, we analyze the relationship between the UAV path and the Cramér–Rao lower bound (CRLB) using the Fisher Information Matrix (FIM) and derive an observability-enhanced trajectory planning method. Real-flight experiments validate the framework, showing that accurate geolocation can be achieved in real time using only low-cost monocular bearing measurements. 
653 |a Lower bounds 
653 |a Depth measurement 
653 |a Accuracy 
653 |a Cramer-Rao bounds 
653 |a Estimates 
653 |a Depth perception 
653 |a Optimization 
653 |a Energy budget 
653 |a Cameras 
653 |a Remote sensing 
653 |a Emergency response 
653 |a Unmanned aerial vehicles 
653 |a Flight 
653 |a Localization 
653 |a Emergency preparedness 
653 |a Kalman filters 
653 |a Low cost 
653 |a Planning 
653 |a Moving targets 
653 |a Algorithms 
653 |a Fisher information 
653 |a Real time 
653 |a Constraints 
653 |a Ambiguity 
653 |a Trajectory planning 
653 |a Least squares 
653 |a Terrain 
653 |a Sliding 
700 1 |a Tong Shiji  |u School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China; pengsun@std.uestc.edu.cn (P.S.); shijitong@std.uestc.edu.cn (S.T.); linbx@uestc.edu.cn (B.L.); maangat@uestc.edu.cn (M.S.) 
700 1 |a Qin Kaiyu  |u School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China; pengsun@std.uestc.edu.cn (P.S.); shijitong@std.uestc.edu.cn (S.T.); linbx@uestc.edu.cn (B.L.); maangat@uestc.edu.cn (M.S.) 
700 1 |a Luo Zhenbing  |u College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China; luozhenbing@163.com 
700 1 |a Lin Boxian  |u School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China; pengsun@std.uestc.edu.cn (P.S.); shijitong@std.uestc.edu.cn (S.T.); linbx@uestc.edu.cn (B.L.); maangat@uestc.edu.cn (M.S.) 
700 1 |a Shi Mengji  |u School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China; pengsun@std.uestc.edu.cn (P.S.); shijitong@std.uestc.edu.cn (S.T.); linbx@uestc.edu.cn (B.L.); maangat@uestc.edu.cn (M.S.) 
773 0 |t Remote Sensing  |g vol. 17, no. 23 (2025), p. 3836-3857 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280962921/abstract/embedded/BP4M5IEWWR03UZF2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280962921/fulltextwithgraphics/embedded/BP4M5IEWWR03UZF2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280962921/fulltextPDF/embedded/BP4M5IEWWR03UZF2?source=fedsrch