Ship Target Feature Detection of Airborne Scanning Radar Based on Trajectory Prediction Integration

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Remote Sensing vol. 17, no. 23 (2025), p. 3858-3883
Tác giả chính: Zhang, Fan
Tác giả khác: Xia Zhenghuan, Jin Shichao, Liu, Xin, Zhao, Zhilong, Zhang, Chuang, Fu, Han, Kang, Xing, Liu Zongqiang, Xue Changhu, Zhang, Tao, Cui Zhiying
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3280962976
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17233858  |2 doi 
035 |a 3280962976 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhang, Fan  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
245 1 |a Ship Target Feature Detection of Airborne Scanning Radar Based on Trajectory Prediction Integration 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>A multi-feature detection method based on trajectory prediction integration is proposed for airborne elevation-scanning radar ship target detection to realize multi-scan feature accumulation. <list-item> Validated with C-band dual-polarization airborne elevation-scanning radar real data, the method outperforms conventional single-frame three-feature detection and other existing scanning algorithms. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>The method addresses the low signal-to-clutter ratio and strong spatio-temporal non-stationarity of sea clutter that plague airborne elevation-scanning radar detection, making up for the defects of existing scanning algorithms. <list-item> Measured data show that VH polarization outperforms VV polarization in detection, beam position affects performance, and refining beam position segmentation of continuous-scan radar can further improve detection, guiding radar parameter configuration. </list-item> In order to address the challenges faced by airborne scanning radars in detecting maritime ship targets, such as low signal-to-clutter ratios and the strong spatio-temporal non-stationarity of sea clutter, this paper proposes a multi-feature detection method based on trajectory prediction integration. First, the Margenau–Hill Spectrogram (MHS) is employed for time–frequency analysis and uniformization processing. The extraction of features is conducted across three dimensions: energy intensity, spatial clustering, and distributional disorder. The metrics employed in this study include ridge integral (RI), maximum size of connected regions (MS), and scanning slice time–frequency entropy (SSTFE). Feature normalization is achieved via reference units to eliminate dynamic range variations. Secondly, a trajectory prediction matrix is constructed to correlate target cross-scan distance variations. When combined with a scan weight matrix that dynamically adjusts multi-frame contributions, this approach enables effective accumulation of target features across multiple scans. Finally, the greedy convex hull algorithm is used to complete target detection with a controllable false alarm rate. The validation process employs real-world data from a C-band dual-polarization airborne scanning radar. The findings indicate a 36.11% enhancement in the number of successful detections in comparison to the conventional single-frame three-feature detection method. Among the extant scanning algorithms, this approach evinces optimal feature space separability and detection performance, thus offering a novel pathway for maritime target detection using airborne scanning radars. 
653 |a Scanning 
653 |a Algorithms 
653 |a Radar 
653 |a Dual polarization (waves) 
653 |a C band 
653 |a Accumulation 
653 |a Greedy algorithms 
653 |a Polarization 
653 |a Frequency dependence 
653 |a Energy utilization 
653 |a Airborne radar 
653 |a Velocity 
653 |a Radar detection 
653 |a Fourier transforms 
653 |a False alarms 
653 |a Predictions 
653 |a Convexity 
653 |a Clustering 
653 |a Time-frequency analysis 
653 |a Sensors 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Target detection 
653 |a Controllability 
653 |a Clutter 
653 |a Frequency analysis 
653 |a Integration 
700 1 |a Xia Zhenghuan  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Jin Shichao  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Liu, Xin  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Zhao, Zhilong  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Zhang, Chuang  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Fu, Han  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Kang, Xing  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Liu Zongqiang  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Xue Changhu  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Zhang, Tao  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
700 1 |a Cui Zhiying  |u State Key Laboratory of Space Information System and Integrated Application, Beijing 100095, China; zhangfan_0713@163.com (F.Z.); liuxin115@mails.ucas.ac.cn (X.L.); zhaozhilong09@mails.ucas.ac.cn (Z.Z.); zhangchuang@iie.ac.cn (C.Z.); fuhan2017@radi.ac.cn (H.F.); xingkang19@mails.ucas.ac.cn (K.X.); bestlzq@nuaa.edu.cn (Z.L.); zhangtao12@mails.ucas.ac.cn (T.Z.); 
773 0 |t Remote Sensing  |g vol. 17, no. 23 (2025), p. 3858-3883 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280962976/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280962976/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280962976/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch